Suchergebnisse - "Algorithm-hardware codesign"

  1. 1

    Algorithm/Hardware Codesign for Real-Time On-Satellite CNN-Based Ship Detection in SAR Imagery von Yang, Geng, Lei, Jie, Xie, Weiying, Fang, Zhenman, Li, Yunsong, Wang, Jiaxuan, Zhang, Xin

    ISSN: 0196-2892, 1558-0644
    Veröffentlicht: New York IEEE 2022
    “… In this article, we propose OSCAR-RT, the first end-to-end algorithm/hardware codesign framework for real-time on-satellite CNN-based SAR ship detection, which can simultaneously produce …”
    Volltext
    Journal Article
  2. 2

    Improving Scalability of Mach-Zehnder Interferometer Based Photonic Computers via Algorithm-Hardware Codesign von On, Mehmet Berkay, Lee, Yun-Jhu, Srouji, Luis El, Abdelghany, Mahmoud, Yoo, S. J. Ben

    ISSN: 0733-8724, 1558-2213
    Veröffentlicht: New York IEEE 15.11.2024
    Veröffentlicht in Journal of lightwave technology (15.11.2024)
    “… Here, we explore two algorithm-hardware codesign approaches: continual learning and tensor-train decomposition to improve the scalability of the MZI-based photonic computers …”
    Volltext
    Journal Article
  3. 3

    Neuromorphic Algorithm-hardware Codesign for Temporal Pattern Learning von Fang, Haowen, Taylor, Brady, Li, Ziru, Mei, Zaidao, Li, Hai Helen, Qiu, Qinru

    Veröffentlicht: IEEE 05.12.2021
    “… Neuromorphic computing and spiking neural networks (SNN) mimic the behavior of biological systems and have drawn interest for their potential to perform …”
    Volltext
    Tagungsbericht
  4. 4

    Efficient Acceleration of Deep Learning Inference on Resource-Constrained Edge Devices: A Review von Shuvo, Md. Maruf Hossain, Islam, Syed Kamrul, Cheng, Jianlin, Morshed, Bashir I.

    ISSN: 0018-9219, 1558-2256
    Veröffentlicht: New York IEEE 01.01.2023
    Veröffentlicht in Proceedings of the IEEE (01.01.2023)
    “… Successful integration of deep neural networks (DNNs) or deep learning (DL) has resulted in breakthroughs in many areas. However, deploying these highly …”
    Volltext
    Journal Article
  5. 5

    An Algorithm-Hardware Co-Optimized Framework for Accelerating N:M Sparse Transformers von Fang, Chao, Zhou, Aojun, Wang, Zhongfeng

    ISSN: 1063-8210, 1557-9999
    Veröffentlicht: New York IEEE 01.11.2022
    “… The Transformer has been an indispensable staple in deep learning. However, for real-life applications, it is very challenging to deploy efficient Transformers …”
    Volltext
    Journal Article
  6. 6

    Algorithm-Hardware Codesign of Fast Parallel Round-Robin Arbiters von Zheng, Si Qing, Yang, Mei

    ISSN: 1045-9219, 1558-2183
    Veröffentlicht: New York IEEE 01.01.2007
    “… As a basic building block of a switch scheduler, a fast and fair arbiter is critical to the efficiency of the scheduler, which is the key to the performance of …”
    Volltext
    Journal Article
  7. 7

    Algorithm Hardware Codesign for High Performance Neuromorphic Computing von Fang, Haowen

    ISBN: 9798762193788
    Veröffentlicht: ProQuest Dissertations & Theses 01.01.2021
    “… Driven by the massive application of Internet of Things (IoT), embedded system and Cyber Physical System (CPS) etc., there is an increasing demand to apply …”
    Volltext
    Dissertation
  8. 8

    Efficient N:M Sparse DNN Training Using Algorithm, Architecture, and Dataflow Co-Design von Fang, Chao, Sun, Wei, Zhou, Aojun, Wang, Zhongfeng

    ISSN: 0278-0070, 1937-4151
    Veröffentlicht: New York IEEE 01.02.2024
    “… Sparse training is one of the promising techniques to reduce the computational cost of DNNs while retaining high accuracy. In particular, N:M fine-grained …”
    Volltext
    Journal Article
  9. 9

    An Efficient Training Accelerator for Transformers With Hardware-Algorithm Co-Optimization von Shao, Haikuo, Lu, Jinming, Wang, Meiqi, Wang, Zhongfeng

    ISSN: 1063-8210, 1557-9999
    Veröffentlicht: New York IEEE 01.11.2023
    “… Transformers have achieved significant success in deep learning, and training Transformers efficiently on resource-constrained platforms has been attracting …”
    Volltext
    Journal Article
  10. 10

    ASP-SIFT: Using Analog Signal Processing Architecture to Accelerate Keypoint Detection of SIFT Algorithm von Fan, Zichen, Liu, Zheyu, Qu, Zheng, Qiao, Fei, Wei, Qi, Liu, Xinjun, Sun, Yinan, Xu, Shuzheng, Yang, Huazhong

    ISSN: 1063-8210, 1557-9999
    Veröffentlicht: New York IEEE 01.01.2020
    “… The scale-invariant feature transform (SIFT) algorithm is still one of the most reliable image feature extraction methods. Despite its excellent robustness on …”
    Volltext
    Journal Article
  11. 11

    HDReason: Algorithm-Hardware Codesign for Hyperdimensional Knowledge Graph Reasoning von Hanning Chen, Ni, Yang, Zakeri, Ali, Zou, Zhuowen, Sanggeon Yun, Wen, Fei, Khaleghi, Behnam, Narayan Srinivasa, Latapie, Hugo, Imani, Mohsen

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 09.03.2024
    Veröffentlicht in arXiv.org (09.03.2024)
    “… In recent times, a plethora of hardware accelerators have been put forth for graph learning applications such as vertex classification and graph …”
    Volltext
    Paper
  12. 12

    Neuromorphic Algorithm-hardware Codesign for Temporal Pattern Learning von Fang, Haowen, Taylor, Brady, Li, Ziru, Zaidao Mei, Li, Hai, Qiu, Qinru

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 07.05.2021
    Veröffentlicht in arXiv.org (07.05.2021)
    “… Neuromorphic computing and spiking neural networks (SNN) mimic the behavior of biological systems and have drawn interest for their potential to perform …”
    Volltext
    Paper
  13. 13

    Accelerating ViT Inference on FPGA through Static and Dynamic Pruning von Parikh, Dhruv, Li, Shouyi, Zhang, Bingyi, Kannan, Rajgopal, Busart, Carl, Prasanna, Viktor

    ISSN: 2576-2621
    Veröffentlicht: IEEE 05.05.2024
    “… To address the above challenges, we propose a comprehensive algorithm-hardware codesign for accelerating ViT on FPGA through simultaneous pruning - combining static weight pruning and dynamic token pruning …”
    Volltext
    Tagungsbericht
  14. 14

    Towards spike-based machine intelligence with neuromorphic computing von Roy, Kaushik, Jaiswal, Akhilesh, Panda, Priyadarshini

    ISSN: 0028-0836, 1476-4687, 1476-4687
    Veröffentlicht: London Nature Publishing Group UK 28.11.2019
    Veröffentlicht in Nature (London) (28.11.2019)
    “… Guided by brain-like ‘spiking’ computational frameworks, neuromorphic computing—brain-inspired computing for machine intelligence—promises to realize …”
    Volltext
    Journal Article
  15. 15

    Biologically Switchable Volatility and Nonvolatility Toward Real Neurotransmitter Mediated Aqueous Reservoir Computing von Li, Zheng, Wu, Qing‐Qing, Wang, Yazhou, Lin, Peng, Xu, Jing‐Juan, Chen, Hong‐Yuan, Zhao, Wei‐Wei

    ISSN: 0935-9648, 1521-4095, 1521-4095
    Veröffentlicht: Germany 12.09.2025
    Veröffentlicht in Advanced materials (Weinheim) (12.09.2025)
    “… The study on aqueous reservoir computing (RC) has just come into being. Nevertheless, aqueous RC still faces significant challenges. Recently, with the …”
    Volltext
    Journal Article
  16. 16

    Stream Processing Architectures for Continuous ECG Monitoring Using Subsampling- Based Classifiers von Loh, Johnson, Gemmeke, Tobias

    ISSN: 1063-8210, 1557-9999
    Veröffentlicht: New York IEEE 01.01.2024
    “… ). In this work, we identify specific constraints to define common operating conditions, which guide the design of ECG accelerators in an algorithm-hardware codesign methodology …”
    Volltext
    Journal Article
  17. 17

    Hardware-Algorithm Codesigned Low-Latency and Resource-Efficient OMP Accelerator for DOA Estimation on FPGA von Jiang, Ruichang, Ye, Wenbin

    ISSN: 1063-8210, 1557-9999
    Veröffentlicht: New York IEEE 01.02.2025
    “… This article introduces an algorithm-hardware codesign optimized for low-latency and resource-efficient direction-of-arrival (DOA …”
    Volltext
    Journal Article
  18. 18

    WRA-SS: A High-Performance Accelerator Integrating Winograd With Structured Sparsity for Convolutional Neural Networks von Yang, Chen, Meng, Yishuo, Xi, Jiawei, Xiang, Siwei, Wang, Jianfei, Mei, Kuizhi

    ISSN: 1063-8210, 1557-9999
    Veröffentlicht: New York IEEE 01.01.2024
    “… In addition, an algorithm-hardware codesign method is proposed to efficiently and flexibly reduce the invalid computations led by the previous filter decomposition method …”
    Volltext
    Journal Article
  19. 19

    KAM-Net: Kilobyte-Scale Ultralightweight Attention-Based Network for Glass Defect Detection With Algorithm/Hardware Co-Design von Zhao, Bingrui, Wang, Yaonan, Zhang, Hui, Liu, Jiaxuan, Zhang, Jinzhou

    ISSN: 0018-9456, 1557-9662
    Veröffentlicht: New York IEEE 2025
    “… Then, we design an efficient algorithm/hardware codesign for KAM-Net on field programmable gate array (FPGA …”
    Volltext
    Journal Article
  20. 20