Suchergebnisse - "ACTIVE learning"

  1. 1

    Generative Adversarial Active Learning for Unsupervised Outlier Detection von Liu, Yezheng, Li, Zhe, Zhou, Chong, Jiang, Yuanchun, Sun, Jianshan, Wang, Meng, He, Xiangnan

    ISSN: 1041-4347, 1558-2191
    Veröffentlicht: New York IEEE 01.08.2020
    Veröffentlicht in IEEE transactions on knowledge and data engineering (01.08.2020)
    “… Outlier detection is an important topic in machine learning and has been used in a wide range of applications. In this paper, we approach outlier detection as …”
    Volltext
    Journal Article
  2. 2

    Active learning for data streams: a survey von Cacciarelli, Davide, Kulahci, Murat

    ISSN: 0885-6125, 1573-0565, 1573-0565
    Veröffentlicht: New York Springer US 01.01.2024
    Veröffentlicht in Machine learning (01.01.2024)
    “… Online active learning is a paradigm in machine learning that aims to select the most informative data points to label from a data stream. The problem of …”
    Volltext
    Journal Article
  3. 3

    Active Learning Query Strategies for Classification, Regression, and Clustering: A Survey von Kumar, Punit, Gupta, Atul

    ISSN: 1000-9000, 1860-4749
    Veröffentlicht: Singapore Springer Singapore 01.07.2020
    Veröffentlicht in Journal of computer science and technology (01.07.2020)
    “… Generally, data is available abundantly in unlabeled form, and its annotation requires some cost. The labeling, as well as learning cost, can be minimized by …”
    Volltext
    Journal Article
  4. 4

    Hyperspectral Image Classification With Convolutional Neural Network and Active Learning von Cao, Xiangyong, Yao, Jing, Xu, Zongben, Meng, Deyu

    ISSN: 0196-2892, 1558-0644
    Veröffentlicht: New York IEEE 01.07.2020
    Veröffentlicht in IEEE transactions on geoscience and remote sensing (01.07.2020)
    “… Deep neural network has been extensively applied to hyperspectral image (HSI) classification recently. However, its success is greatly attributed to numerous …”
    Volltext
    Journal Article
  5. 5

    Empirical investigation of active learning strategies von Pereira-Santos, Davi, Prudêncio, Ricardo Bastos Cavalcante, de Carvalho, André C.P.L.F.

    ISSN: 0925-2312, 1872-8286
    Veröffentlicht: Elsevier B.V 31.01.2019
    Veröffentlicht in Neurocomputing (Amsterdam) (31.01.2019)
    “… Many predictive tasks require labeled data to induce classification models. The data labeling process may have a high cost. Several strategies have been …”
    Volltext
    Journal Article
  6. 6

    Cost-Effective Active Learning for Deep Image Classification von Wang, Keze, Zhang, Dongyu, Li, Ya, Zhang, Ruimao, Lin, Liang

    ISSN: 1051-8215, 1558-2205
    Veröffentlicht: New York IEEE 01.12.2017
    “… Recent successes in learning-based image classification, however, heavily rely on the large number of annotated training samples, which may require …”
    Volltext
    Journal Article
  7. 7

    Barriers to student active learning in higher education von Børte, Kristin, Nesje, Katrine, Lillejord, Sølvi

    ISSN: 1356-2517, 1470-1294
    Veröffentlicht: Abingdon Routledge 03.04.2023
    Veröffentlicht in Teaching in higher education (03.04.2023)
    “… This article reviews research that consistently, across borders and over time, reveals inertia in Higher Education institutions related to innovation in …”
    Volltext
    Journal Article
  8. 8

    Combining X-Vectors and Bayesian Batch Active Learning: Two-Stage Active Learning Pipeline for Speech Recognition von Kundacina, Ognjen, Vincan, Vladimir, Miskovic, Dragisa

    ISSN: 2998-4173, 2998-4173
    Veröffentlicht: IEEE 2025
    “… This paper introduces a novel two-stage active learning (AL) pipeline for automatic speech recognition (ASR), combining unsupervised and supervised AL methods …”
    Volltext
    Journal Article
  9. 9

    Active Learning With Convolutional Neural Networks for Hyperspectral Image Classification Using a New Bayesian Approach von Haut, Juan Mario, Paoletti, Mercedes E., Plaza, Javier, Li, Jun, Plaza, Antonio

    ISSN: 0196-2892, 1558-0644
    Veröffentlicht: New York IEEE 01.11.2018
    Veröffentlicht in IEEE transactions on geoscience and remote sensing (01.11.2018)
    “… Hyperspectral imaging is a widely used technique in remote sensing in which an imaging spectrometer collects hundreds of images (at different wavelength …”
    Volltext
    Journal Article
  10. 10

    Pool-Based Sequential Active Learning for Regression von Wu, Dongrui

    ISSN: 2162-237X, 2162-2388, 2162-2388
    Veröffentlicht: United States IEEE 01.05.2019
    “… Active learning (AL) is a machine-learning approach for reducing the data labeling effort. Given a pool of unlabeled samples, it tries to select the most …”
    Volltext
    Journal Article
  11. 11
  12. 12
  13. 13

    Meet, Greet, and Learn: A Content-Centric “Getting to Know You” Activity von Gray, Jennifer B.

    ISSN: 8756-7555, 1930-8299
    Veröffentlicht: 31.05.2025
    Veröffentlicht in College teaching (31.05.2025)
    Volltext
    Journal Article
  14. 14

    Machine learning assisted design of high entropy alloys with desired property von Wen, Cheng, Zhang, Yan, Wang, Changxin, Xue, Dezhen, Bai, Yang, Antonov, Stoichko, Dai, Lanhong, Lookman, Turab, Su, Yanjing

    ISSN: 1359-6454, 1873-2453
    Veröffentlicht: United States Elsevier Ltd 15.05.2019
    Veröffentlicht in Acta materialia (15.05.2019)
    “… We formulate a materials design strategy combining a machine learning (ML) surrogate model with experimental design algorithms to search for high entropy …”
    Volltext
    Journal Article
  15. 15

    A system active learning Kriging method for system reliability-based design optimization with a multiple response model von Xiao, Mi, Zhang, Jinhao, Gao, Liang

    ISSN: 0951-8320, 1879-0836
    Veröffentlicht: Barking Elsevier Ltd 01.07.2020
    Veröffentlicht in Reliability engineering & system safety (01.07.2020)
    “… •A new method is proposed for system reliability-based design optimization.•The responses of all constraints from a multiple response model are …”
    Volltext
    Journal Article
  16. 16

    Fault Diagnosis of Rotating Machinery With Limited Expert Interaction: A Multicriteria Active Learning Approach Based on Broad Learning System von Liu, Zeyi, Zhang, Jingfei, He, Xiao, Zhang, Qinghua, Sun, Guoxi, Zhou, Donghua

    ISSN: 1063-6536, 1558-0865
    Veröffentlicht: New York IEEE 01.03.2023
    Veröffentlicht in IEEE transactions on control systems technology (01.03.2023)
    “… Recently, research on the fault diagnosis of rotating machinery, especially for the compound or unknown cases, has drawn increasing attention. Some advanced …”
    Volltext
    Journal Article
  17. 17

    A comprehensive active learning method for multiclass imbalanced data streams with concept drift von Liu, Weike, Zhang, Hang, Ding, Zhaoyun, Liu, Qingbao, Zhu, Cheng

    ISSN: 0950-7051, 1872-7409
    Veröffentlicht: Amsterdam Elsevier B.V 05.03.2021
    Veröffentlicht in Knowledge-based systems (05.03.2021)
    “… A challenge to many real-world applications is multiclass imbalance with concept drift. In this paper, we propose a comprehensive active learning method for …”
    Volltext
    Journal Article
  18. 18
  19. 19

    Practical Active Learning Stations to Transform Existing Learning Environments Into Flexible, Active Learning Classrooms von Eickholt, Jesse, Johnson, Matthew R., Seeling, Patrick

    ISSN: 0018-9359, 1557-9638
    Veröffentlicht: New York IEEE 01.05.2021
    Veröffentlicht in IEEE transactions on education (01.05.2021)
    “… Contribution: Practical active learning stations (PALSs)-equipped classrooms function similar to prototypical active learning classrooms (ALCs). They support …”
    Volltext
    Journal Article
  20. 20

    Ensemble-SINDy: Robust sparse model discovery in the low-data, high-noise limit, with active learning and control von Fasel, U, Kutz, J N, Brunton, B W, Brunton, S L

    ISSN: 1364-5021
    Veröffentlicht: England 01.04.2022
    “… Sparse model identification enables the discovery of nonlinear dynamical systems purely from data; however, this approach is sensitive to noise, especially in …”
    Weitere Angaben
    Journal Article