Suchergebnisse - "A3C algorithm"

  1. 1

    Blockchain-Based Edge Computing Resource Allocation in IoT: A Deep Reinforcement Learning Approach von He, Ying, Wang, Yuhang, Qiu, Chao, Lin, Qiuzhen, Li, Jianqiang, Ming, Zhong

    ISSN: 2327-4662, 2327-4662
    Veröffentlicht: Piscataway IEEE 15.02.2021
    Veröffentlicht in IEEE internet of things journal (15.02.2021)
    “… With the exponential growth in the number of Internet-of-Things (IoT) devices, the cloud-centric computing paradigm can hardly meet the increasingly high …”
    Volltext
    Journal Article
  2. 2

    A3C-Based Intelligent Event-Triggering Control of Networked Nonlinear Unmanned Marine Vehicles Subject to Hybrid Attacks von Ye, Zehua, Zhang, Dan, Wu, Zheng-Guang, Yan, Huaicheng

    ISSN: 1524-9050, 1558-0016
    Veröffentlicht: New York IEEE 01.08.2022
    “… This paper is concerned with the intelligent event-triggering-based positioning control of networked unmanned marine vehicle (UMV) systems with hybrid attacks, …”
    Volltext
    Journal Article
  3. 3

    Workflow scheduling based on asynchronous advantage actor–critic algorithm in multi-cloud environment von Tang, Xuhao, Liu, Fagui, Wang, Bin, Xu, Dishi, Jiang, Jun, Wu, Qingbo, Chen, C.L. Philip

    ISSN: 0957-4174
    Veröffentlicht: Elsevier Ltd 15.12.2024
    Veröffentlicht in Expert systems with applications (15.12.2024)
    “… Recently, the multi-cloud environment (MCE) has increasingly become the preferred choice of users. As with the cloud environment, efficient workflow scheduling …”
    Volltext
    Journal Article
  4. 4

    A multi-objective decision-making method for small modular reactor operation based on A3C algorithm von Cheng, Shouyu, Gu, Chengyan, Zhang, Bowen, Wang, Shibo, Yan, Chengxing

    ISSN: 0149-1970
    Veröffentlicht: Elsevier Ltd 01.11.2024
    Veröffentlicht in Progress in nuclear energy (New series) (01.11.2024)
    “… Small modular reactors (SMRs) are ideal energy sources for remote areas, but they still require operators to make decisions. Due to the harsh working …”
    Volltext
    Journal Article
  5. 5

    Multi-market agency-based power procurement strategies for power grid companies using reinforcement learning von Wang, Boyu, Xu, Xiaofeng, Wang, Peng

    ISSN: 0306-2619
    Veröffentlicht: Elsevier Ltd 01.01.2026
    Veröffentlicht in Applied energy (01.01.2026)
    “… At this critical stage of simultaneously advancing the construction of a new power system and power market reform, power grid companies face challenges in …”
    Volltext
    Journal Article
  6. 6

    Analysis of effective integration of information platform courses and daily teaching in universities based on adaptive network von Ma, Jing

    ISSN: 2444-8656, 2444-8656
    Veröffentlicht: Beirut Sciendo 01.01.2024
    Veröffentlicht in Applied mathematics and nonlinear sciences (01.01.2024)
    “… This paper first analyzes the effective application of web platforms and information technology in college teaching and constructs a web-based teaching aid …”
    Volltext
    Journal Article
  7. 7

    Adaptive Sharding for UAV Networks: A Deep Reinforcement Learning Approach to Blockchain Optimization von Lu, Kaiyin, Zhang, Xinguang, Zhai, Tianbo, Zhou, Mengjie

    ISSN: 1424-8220, 1424-8220
    Veröffentlicht: Switzerland MDPI AG 14.11.2024
    Veröffentlicht in Sensors (Basel, Switzerland) (14.11.2024)
    “… As unmanned aerial vehicle (UAV) technology expands into diverse applications, the demand for enhanced performance intensifies. Blockchain sharding technology …”
    Volltext
    Journal Article
  8. 8

    Spatial arrangement using deep reinforcement learning to minimise rearrangement in ship block stockyards von Kim, Byeongseop, Jeong, Yongkuk, Shin, Jong Gye

    ISSN: 0020-7543, 1366-588X, 1366-588X
    Veröffentlicht: London Taylor & Francis 17.08.2020
    Veröffentlicht in International journal of production research (17.08.2020)
    “… As the shipbuilding industry is an engineering-to-order industry, different types of products are manufactured according to customer requests, and each product …”
    Volltext
    Journal Article
  9. 9

    On-Chain and Off-Chain Data Management for Blockchain-Internet of Things: A Multi-Agent Deep Reinforcement Learning Approach von Tsang, Y. P., Lee, C. K. M., Zhang, Kening, Wu, C. H., Ip, W. H.

    ISSN: 1570-7873, 1572-9184
    Veröffentlicht: Dordrecht Springer Netherlands 01.03.2024
    Veröffentlicht in Journal of grid computing (01.03.2024)
    “… The emergence of blockchain technology has seen applications increasingly hybridise cloud storage and distributed ledger technology in the Internet of Things …”
    Volltext
    Journal Article
  10. 10

    A3C-Based Interference Cancellation Algorithm for Cognitive Internet of Things Communication von LIU Xinmeng, XIE Jianli, LI Cuiran, WANG Yiming

    ISSN: 1000-3428
    Veröffentlicht: Editorial Office of Computer Engineering 01.10.2024
    Veröffentlicht in Ji suan ji gong cheng (01.10.2024)
    “… To address the intelligent needs of spectrum resource interference management, in this study, an Asynchronous Advantage Actor-Critic(A3C)-based intelligent …”
    Volltext
    Journal Article
  11. 11

    A study of electricity sales offer strategies applicable to the participation of multi-energy generators in short- and medium-term markets von Wang, Boyu, Xu, Xiaofeng, Li, Genzhu, Fan, Hang, Qiao, Ning, Chen, Haidong, Liu, Dunnan, Ma, Tongtao

    ISSN: 2352-4677, 2352-4677
    Veröffentlicht: Elsevier Ltd 01.12.2024
    Veröffentlicht in Sustainable Energy, Grids and Networks (01.12.2024)
    “… Due to the increasing proportion of renewable energy, a multi-layered and multi-timescale energy market has emerged in many countries such as China. In the …”
    Volltext
    Journal Article
  12. 12

    A Parallel Framework for Fast Charge/Discharge Scheduling of Battery Storage Systems in Microgrids von Huang, Wei-Tzer, Chung, Wu-Chun, Wu, Chao-Chin, Huang, Tse-Yun

    ISSN: 1996-1073, 1996-1073
    Veröffentlicht: Basel MDPI AG 01.12.2024
    Veröffentlicht in Energies (Basel) (01.12.2024)
    “… Fast charge/discharge scheduling of battery storage systems is essential in microgrids to effectively balance variable renewable energy sources, meet …”
    Volltext
    Journal Article
  13. 13

    Time-Varying Weights in Multi-Reward Architecture for Deep Reinforcement Learning von Xu, Meng, Chen, Xinhong, She, Yechao, Jin, Yang, Wang, Jianping

    ISSN: 2471-285X, 2471-285X
    Veröffentlicht: Piscataway IEEE 01.04.2024
    “… Deep Reinforcement Learning (DRL) has recently been focused on extracting more knowledge from the reward signal to improve sample efficiency. The Multi-Reward …”
    Volltext
    Journal Article
  14. 14

    Cooperative traffic signal control using Multi-step return and Off-policy Asynchronous Advantage Actor-Critic Graph algorithm von Yang, Shantian, Yang, Bo, Wong, Hau-San, Kang, Zhongfeng

    ISSN: 0950-7051, 1872-7409
    Veröffentlicht: Amsterdam Elsevier B.V 01.11.2019
    Veröffentlicht in Knowledge-based systems (01.11.2019)
    “… Intelligent traffic signal control helps to reduce traffic congestion and thus has been studied for a few decades. Multi-intersection cooperative traffic …”
    Volltext
    Journal Article
  15. 15

    Research on Offloading and Resource Allocation for MEC with Energy Harvesting Based on Deep Reinforcement Learning von Chen, Jun, Mi, Junyu, Guo, Chen, Fu, Qing, Tang, Weidong, Luo, Wenlang, Zhu, Qing

    ISSN: 2079-9292, 2079-9292
    Veröffentlicht: Basel MDPI AG 08.05.2025
    Veröffentlicht in Electronics (Basel) (08.05.2025)
    “… Mobile edge computing (MEC) systems empowered by energy harvesting (EH) significantly enhance sustainable computing capabilities for mobile devices (MDs). This …”
    Volltext
    Journal Article
  16. 16

    Deep Reinforcement Learning for Real-Time Airport Emergency Evacuation Using Asynchronous Advantage Actor–Critic (A3C) Algorithm von Zhou, Yujing, Yang, Yupeng, Pan, Bill Deng, Liu, Yongxin, Namilae, Sirish, Song, Houbing Herbert, Liu, Dahai

    ISSN: 2227-7390, 2227-7390
    Veröffentlicht: Basel MDPI AG 01.07.2025
    Veröffentlicht in Mathematics (Basel) (01.07.2025)
    “… Emergencies can occur unexpectedly and require immediate action, especially in aviation, where time pressure and uncertainty are high. This study focused on …”
    Volltext
    Journal Article
  17. 17

    Research on Cooperation Between Wind Farm and Electric Vehicle Aggregator Based on A3C Algorithm von Pan, Yang, Wang, Weiye, Li, Yanbin, Zhang, Feng, Sun, Yanting, Liu, Dunnan

    ISSN: 2169-3536, 2169-3536
    Veröffentlicht: Piscataway IEEE 2021
    Veröffentlicht in IEEE access (2021)
    “… As renewable energy sources such as wind are connected to the grid on a large scale, the safe and stable operation of the power system is facing challenges and …”
    Volltext
    Journal Article
  18. 18

    Introducing Event-Based Communication in Asynchronous Advantage Actor-Critic Algorithm von Sunai, Hiroki, Kobayashi, Koichi, Yamashita, Yuh

    ISSN: 2693-0854
    Veröffentlicht: IEEE 29.10.2024
    Veröffentlicht in IEEE Global Conference on Consumer Electronics (29.10.2024)
    “… Distributed reinforcement learning is a method for learning by multiple agents in parallel. In distributed reinforcement learning, one of the challenge topics …”
    Volltext
    Tagungsbericht
  19. 19

    A3C-Based Model-Free Adaptive Fault-Tolerant Control for Intelligent Ships with an Extended State Observer von Xu, Chengqi, Liu, Jialun, Li, Shijie, Dong, Zhilin, Hu, Xinjue

    ISSN: 2832-899X
    Veröffentlicht: IEEE 16.07.2025
    “… A new fault-tolerant control (FTC) method based on the advantage actor-critic (A3C) learning model-free adaptive control (MFAC) is proposed for intelligent …”
    Volltext
    Tagungsbericht
  20. 20

    Intelligent Task Scheduling for Microservices via A3C-Based Reinforcement Learning von Wang, Yang, Tang, Tengda, Fang, Zhou, Deng, Yingnan, Duan, Yifei

    ISSN: 2833-2423
    Veröffentlicht: IEEE 09.05.2025
    “… To address the challenges of high resource dynamism and intensive task concurrency in microservice systems, this paper proposes an adaptive resource scheduling …”
    Volltext
    Tagungsbericht