Suchergebnisse - "3D convolutional autoencoders"

Andere Suchmöglichkeiten:

  • Treffer 1 - 13 von 13
Treffer weiter einschränken
  1. 1

    A 3D Sparse Autoencoder for Fully Automated Quality Control of Affine Registrations in Big Data Brain MRI Studies von Thadikemalla, Venkata Sainath Gupta, Focke, Niels K., Tummala, Sudhakar

    ISSN: 2948-2933, 0897-1889, 2948-2925, 2948-2933, 1618-727X
    Veröffentlicht: Cham Springer International Publishing 01.02.2024
    Veröffentlicht in Journal of digital imaging (01.02.2024)
    “… This paper presents a fully automated pipeline using a sparse convolutional autoencoder for quality control (QC) of affine registrations in large-scale …”
    Volltext
    Journal Article
  2. 2

    Alzheimer's disease classification based on combination of multi-model convolutional networks von Fan Li, Danni Cheng, Manhua Liu

    Veröffentlicht: IEEE 01.10.2017
    “… Alzheimer's disease (AD) is an irreversible neurodegenerative disorder with progressive impairment of memory and cognitive functions. It brings increasingly …”
    Volltext
    Tagungsbericht
  3. 3

    Constructing fine-granularity functional brain network atlases via deep convolutional autoencoder von Zhao, Yu, Dong, Qinglin, Chen, Hanbo, Iraji, Armin, Li, Yujie, Makkie, Milad, Kou, Zhifeng, Liu, Tianming

    ISSN: 1361-8415, 1361-8423, 1361-8423
    Veröffentlicht: Netherlands Elsevier B.V 01.12.2017
    Veröffentlicht in Medical image analysis (01.12.2017)
    “… •A new deep 3D convolutional autoencoder to model brain network maps.•Derived fine-granularity functional brain network atlases …”
    Volltext
    Journal Article
  4. 4
  5. 5

    Simulated four-dimensional CT for markerless tumor tracking using a deep learning network with multi-task learning von Mori, Shinichiro, Hirai, Ryusuke, Sakata, Yukinobu

    ISSN: 1120-1797, 1724-191X, 1724-191X
    Veröffentlicht: Italy Elsevier Ltd 01.12.2020
    Veröffentlicht in Physica medica (01.12.2020)
    “… (each field representing one-ninth of the respiratory cycle) from each CT dataset based on a 3D convolutional autoencoder with shortcut connections using deformable image registration …”
    Volltext
    Journal Article
  6. 6

    Three-Dimensional Convolutional Autoencoder Extracts Features of Structural Brain Images With a “Diagnostic Label-Free” Approach: Application to Schizophrenia Datasets von Yamaguchi, Hiroyuki, Hashimoto, Yuki, Sugihara, Genichi, Miyata, Jun, Murai, Toshiya, Takahashi, Hidehiko, Honda, Manabu, Hishimoto, Akitoyo, Yamashita, Yuichi

    ISSN: 1662-453X, 1662-4548, 1662-453X
    Veröffentlicht: Switzerland Frontiers Research Foundation 07.07.2021
    Veröffentlicht in Frontiers in neuroscience (07.07.2021)
    “… The purpose of this study was to investigate the efficacy of a 3D convolutional autoencoder (3D-CAE …”
    Volltext
    Journal Article
  7. 7

    Behavior Score-Embedded Brain Encoder Network for Improved Classification of Alzheimer Disease Using Resting State fMRI von Hsieh, Wan-Ting, Lefort-Besnard, Jeremy, Yang, Hao-Chun, Kuo, Li-Wei, Lee, Chi-Chun

    ISSN: 2694-0604, 1558-4615, 2694-0604
    Veröffentlicht: IEEE 01.07.2020
    “… BSEN is based on a 3D convolutional autoencoder structure with contrastive loss jointly optimized using behavior scores from Mini-Mental State Examination (MMSE …”
    Volltext
    Tagungsbericht Journal Article
  8. 8

    Deep Learning of Lung Diseases on Computed Tomography Images von Li, Frank

    ISBN: 9798379785642
    Veröffentlicht: ProQuest Dissertations & Theses 01.01.2023
    “… This research is a collection of three papers on the use of deep learning to detect and classify lung diseases or lung injuries using a CAE-FC model or a …”
    Volltext
    Dissertation
  9. 9

    Learning Local Feature Descriptions in 3D Ultrasound von Wulff, Daniel, Hagenah, Jannis, Ipsen, Svenja, Ernst, Floris

    ISSN: 2471-7819
    Veröffentlicht: IEEE 01.10.2020
    “… Tools for automatic image analysis are gaining importance in the clinical workflow, ranging from time-saving tools in diagnostics to real-time methods in …”
    Volltext
    Tagungsbericht
  10. 10

    Efficient feature embedding of 3D brain MRI images for content-based image retrieval with deep metric learning von Onga, Yuto, Fujiyama, Shingo, Arai, Hayato, Chayama, Yusuke, Iyatomi, Hitoshi, Oishi, Kenichi

    Veröffentlicht: IEEE 01.12.2019
    “… ). In DDCML, we introduce deep metric learning to a 3D convolutional autoencoder (CAE). Our proposed DDCML scheme achieves a high dimensional compression rate (4096:1 …”
    Volltext
    Tagungsbericht
  11. 11

    Three-dimensional convolutional autoencoder extracts features of structural brain images with a diagnostic label-free approach: Application to schizophrenia datasets von Yamaguchi, Hiroyuki, Hashimoto, Yuki, Sugihara, Genichi, Miyata, Jun, Murai, Toshiya, Takahashi, Hidehiko, Honda, Manabu, Hishimoto, Akitoyo, Yamashita, Yuichi

    ISSN: 2692-8205, 2692-8205
    Veröffentlicht: Cold Spring Harbor Cold Spring Harbor Laboratory Press 25.08.2020
    Veröffentlicht in bioRxiv (25.08.2020)
    “… The purpose of this study was to investigate the efficacy of a 3D convolutional autoencoder (CAE …”
    Volltext
    Paper
  12. 12

    Behavior Score-Embedded Brain Encoder Network for Improved Classification of Alzheimer Disease Using Resting State fMRI von Wan-Ting, Hsieh, Lefort-Besnard, Jeremy, Hao-Chun, Yang, Li-Wei, Kuo, Chi-Chun, Lee

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 04.11.2022
    Veröffentlicht in arXiv.org (04.11.2022)
    “… BSEN is based on a 3D convolutional autoencoder structure with contrastive loss jointly optimized using behavior scores from MiniMental State Examination (MMSE …”
    Volltext
    Paper
  13. 13

    Efficient feature embedding of 3D brain MRI images for content-based image retrieval with deep metric learning von Onga, Yuto, Fujiyama, Shingo, Arai, Hayato, Chayama, Yusuke, Iyatomi, Hitoshi, Oishi, Kenichi

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 04.12.2019
    Veröffentlicht in arXiv.org (04.12.2019)
    “… ). In DDCML, we introduce deep metric learning to a 3D convolutional autoencoder (CAE). Our proposed DDCML scheme achieves a high dimensional compression rate (4096:1 …”
    Volltext
    Paper