Výsledky vyhledávání - "• Computing methodologies → Machine Learning → Learning paradigm"

  1. 1

    PrefixRL: Optimization of Parallel Prefix Circuits using Deep Reinforcement Learning Autor Roy, Rajarshi, Raiman, Jonathan, Kant, Neel, Elkin, Ilyas, Kirby, Robert, Siu, Michael, Oberman, Stuart, Godil, Saad, Catanzaro, Bryan

    Vydáno: IEEE 05.12.2021
    “…In this work, we present a reinforcement learning (RL) based approach to designing parallel prefix circuits such as adders or priority encoders that are…”
    Získat plný text
    Konferenční příspěvek
  2. 2

    Code Difference Guided Adversarial Example Generation for Deep Code Models Autor Tian, Zhao, Chen, Junjie, Jin, Zhi

    ISSN: 2643-1572
    Vydáno: IEEE 11.09.2023
    “…Adversarial examples are important to test and enhance the robustness of deep code models. As source code is discrete and has to strictly stick to complex…”
    Získat plný text
    Konferenční příspěvek
  3. 3

    Muffin: A Framework Toward Multi-Dimension AI Fairness by Uniting Off-the-Shelf Models Autor Sheng, Yi, Yang, Junhuan, Yang, Lei, Shi, Yiyu, Hu, Jingtong, Jiang, Weiwen

    Vydáno: United States IEEE 01.07.2023
    “…Model fairness (a.k.a., bias) has become one of the most critical problems in a wide range of AI applications. An unfair model in autonomous driving may cause…”
    Získat plný text
    Konferenční příspěvek Journal Article
  4. 4

    Dissecting Global Search: A Simple Yet Effective Method to Boost Individual Discrimination Testing and Repair Autor Quan, Lili, Li, Tianlin, Xie, Xiaofei, Chen, Zhenpeng, Chen, Sen, Jiang, Lingxiao, Li, Xiaohong

    ISSN: 1558-1225
    Vydáno: IEEE 26.04.2025
    “…Deep Learning (DL) has achieved significant success in socially critical decision-making applications but often exhibits unfair behaviors, raising social…”
    Získat plný text
    Konferenční příspěvek
  5. 5

    Softermax: Hardware/Software Co-Design of an Efficient Softmax for Transformers Autor Stevens, Jacob R., Venkatesan, Rangharajan, Dai, Steve, Khailany, Brucek, Raghunathan, Anand

    Vydáno: IEEE 05.12.2021
    “…Transformers have transformed the field of natural language processing. Their superior performance is largely attributed to the use of stacked "self-attention"…”
    Získat plný text
    Konferenční příspěvek
  6. 6

    Enabling On-Device Self-Supervised Contrastive Learning with Selective Data Contrast Autor Wu, Yawen, Wang, Zhepeng, Zeng, Dewen, Shi, Yiyu, Hu, Jingtong

    Vydáno: IEEE 05.12.2021
    “…After a model is deployed on edge devices, it is desirable for these devices to learn from unlabeled data to continuously improve accuracy. Contrastive…”
    Získat plný text
    Konferenční příspěvek
  7. 7

    Code Prediction by Feeding Trees to Transformers Autor Kim, Seohyun, Zhao, Jinman, Tian, Yuchi, Chandra, Satish

    ISBN: 1665402962, 9781665402965
    ISSN: 1558-1225
    Vydáno: IEEE 01.05.2021
    “…Code prediction, more specifically autocomplete, has become an essential feature in modern IDEs. Autocomplete is more effective when the desired next token is…”
    Získat plný text
    Konferenční příspěvek
  8. 8

    Twin Graph-Based Anomaly Detection via Attentive Multi-Modal Learning for Microservice System Autor Huang, Jun, Yang, Yang, Yu, Hang, Li, Jianguo, Zheng, Xiao

    ISSN: 2643-1572
    Vydáno: IEEE 11.09.2023
    “…Microservice architecture has sprung up over recent years for managing enterprise applications, due to its ability to independently deploy and scale services…”
    Získat plný text
    Konferenční příspěvek
  9. 9

    UniGenCoder: Merging SEQ2SEQ and SEQ2TREE Paradigms for Unified Code Generation Autor Shao, Liangying, Yan, Yanfu, Poshyvanyk, Denys, Su, Jinsong

    ISSN: 2832-7632
    Vydáno: IEEE 27.04.2025
    “…Deep learning-based code generation has completely transformed the way developers write programs today. Existing approaches to code generation have focused…”
    Získat plný text
    Konferenční příspěvek
  10. 10

    A Unified DNN Weight Pruning Framework Using Reweighted Optimization Methods Autor Zhang, Tianyun, Ma, Xiaolong, Zhan, Zheng, Zhou, Shanglin, Ding, Caiwen, Fardad, Makan, Wang, Yanzhi

    Vydáno: IEEE 05.12.2021
    “…To address the large model size and intensive computation requirement of deep neural networks (DNNs), weight pruning techniques have been proposed and…”
    Získat plný text
    Konferenční příspěvek
  11. 11

    CascadeHD: Efficient Many-Class Learning Framework Using Hyperdimensional Computing Autor Kim, Yeseong, Kim, Jiseung, Imani, Mohsen

    Vydáno: IEEE 05.12.2021
    “…The brain-inspired hyperdimensional computing (HDC) gains attention as a light-weight and extremely parallelizable learning solution alternative to deep neural…”
    Získat plný text
    Konferenční příspěvek
  12. 12

    Segmented Angular Pre-Processing for Accurate and Efficient In-Memory Vector Similarity Search Autor Huang, Chi-Tse, Wang, Jen-Chieh, Cheng, Hsiang-Yun, Wu, An-Yeu Andy

    Vydáno: IEEE 22.06.2025
    “…Vector similarity search (VSS) is a fundamental operation in modern AI applications, including few-shot learning (FSL) and approximate nearest neighbor search…”
    Získat plný text
    Konferenční příspěvek
  13. 13

    On-the-fly Improving Performance of Deep Code Models via Input Denoising Autor Tian, Zhao, Chen, Junjie, Zhang, Xiangyu

    ISSN: 2643-1572
    Vydáno: IEEE 11.09.2023
    “…Deep learning has been widely adopted to tackle various code-based tasks by building deep code models based on a large amount of code snippets. While these…”
    Získat plný text
    Konferenční příspěvek
  14. 14

    Enabling On-Tiny-Device Model Personalization via Gradient Condensing and Alternant Partial Update Autor Jia, Zhenge, Shi, Yiyang, Bao, Zeyu, Wang, Zirui, Pang, Xin, Liu, Huiguo, Duan, Yu, Shen, Zhaoyan, Zhao, Mengying

    Vydáno: IEEE 22.06.2025
    “…On-device training enables the model to adapt to user-specific data by fine-tuning a pre-trained model locally. As embedded devices become ubiquitous,…”
    Získat plný text
    Konferenční příspěvek
  15. 15

    Multiple-Boundary Clustering and Prioritization to Promote Neural Network Retraining Autor Shen, Weijun, Li, Yanhui, Chen, Lin, Han, Yuanlei, Zhou, Yuming, Xu, Baowen

    ISSN: 2643-1572
    Vydáno: ACM 01.09.2020
    “…With the increasing application of deep learning (DL) models in many safety-critical scenarios, effective and efficient DL testing techniques are much in…”
    Získat plný text
    Konferenční příspěvek
  16. 16

    PreSto: An In-Storage Data Preprocessing System for Training Recommendation Models Autor Lee, Yunjae, Kim, Hyeseong, Rhu, Minsoo

    Vydáno: IEEE 29.06.2024
    “…Training recommendation systems (RecSys) faces several challenges as it requires the "data preprocessing" stage to preprocess an ample amount of raw data and…”
    Získat plný text
    Konferenční příspěvek
  17. 17

    Neurally-Inspired Hyperdimensional Classification for Efficient and Robust Biosignal Processing Autor Ni, Yang, Lesica, Nicholas, Zeng, Fan-Gang, Imani, Mohsen

    ISSN: 1558-2434
    Vydáno: ACM 29.10.2022
    “…The biosignals consist of several sensors that collect time series information. Since time series contain temporal dependencies, they are difficult to process…”
    Získat plný text
    Konferenční příspěvek
  18. 18

    AppealNet: An Efficient and Highly-Accurate Edge/Cloud Collaborative Architecture for DNN Inference Autor Li, Min, Li, Yu, Tian, Ye, Jiang, Li, Xu, Qiang

    Vydáno: IEEE 05.12.2021
    “…This paper presents AppealNet, a novel edge/cloud collaborative architecture that runs deep learning (DL) tasks more efficiently than state-of-the-art…”
    Získat plný text
    Konferenční příspěvek
  19. 19

    Online Human Activity Recognition using Low-Power Wearable Devices Autor Bhat, Ganapati, Deb, Ranadeep, Chaurasia, Vatika Vardhan, Shill, Holly, Ogras, Umit Y.

    ISSN: 1558-2434
    Vydáno: ACM 05.11.2018
    “…Human activity recognition (HAR) has attracted significant research interest due to its applications in health monitoring and patient rehabilitation. Recent…”
    Získat plný text
    Konferenční příspěvek
  20. 20

    CAE-DFKD: Bridging the Transferability Gap in Data-Free Knowledge Distillation Autor Zhang, Zherui, Wang, Changwei, Xu, Rongtao, Xu, Wenhao, Xu, Shibiao, Zhang, Yu, Zhou, Jie, Guo, Li

    Vydáno: IEEE 22.06.2025
    “…Data-Free Knowledge Distillation (DFKD) enables the knowledge transfer from the given pre-trained teacher network to the target student model without access to…”
    Získat plný text
    Konferenční příspěvek