Výsledky vyhľadávania - variational graph convolutional autoencoder
-
1
GVDTI: graph convolutional and variational autoencoders with attribute-level attention for drug–protein interaction prediction
ISSN: 1467-5463, 1477-4054, 1477-4054Vydavateľské údaje: England Oxford University Press 17.01.2022Vydané v Briefings in bioinformatics (17.01.2022)“… First, a framework based on graph convolutional autoencoder is constructed to learn attention-enhanced topological embedding that integrates the topology structure…”
Získať plný text
Journal Article -
2
Anomaly Detection Based on Graph Convolutional Network–Variational Autoencoder Model Using Time-Series Vibration and Current Data
ISSN: 2227-7390, 2227-7390Vydavateľské údaje: Basel MDPI AG 01.12.2024Vydané v Mathematics (Basel) (01.12.2024)“…This paper proposes a deep learning-based anomaly detection method using time-series vibration and current data, which were obtained from endurance tests on…”
Získať plný text
Journal Article -
3
Graph-Variational Convolutional Autoencoder-Based Fault Detection and Diagnosis for Photovoltaic Arrays
ISSN: 2075-1702, 2075-1702Vydavateľské údaje: Basel MDPI AG 01.12.2024Vydané v Machines (Basel) (01.12.2024)“… This paper introduces a deep learning model that combines a graph convolutional network with a variational autoencoder to diagnose faults in solar arrays…”
Získať plný text
Journal Article -
4
Subject Representation Learning from EEG using Graph Convolutional Variational Autoencoders
ISSN: 2379-190XVydavateľské údaje: IEEE 06.04.2025Vydané v Proceedings of the ... IEEE International Conference on Acoustics, Speech and Signal Processing (1998) (06.04.2025)“…We propose GC-VASE, a graph convolutional-based variational autoencoder that leverages contrastive learning for subject representation learning from EEG data…”
Získať plný text
Konferenčný príspevok.. -
5
GVDTI: graph convolutional and variational autoencoders with attribute-level attention for drug–protein interaction prediction
ISSN: 1467-5463, 1477-4054Vydavateľské údaje: Oxford University Press (OUP) 27.10.2021Vydané v Briefings in Bioinformatics (27.10.2021)Získať plný text
Journal Article -
6
Optimization of Graph Convolutional Networks with Variational Graph Autoencoder Architecture for 3D Face Reconstruction Task
ISSN: 2768-0754Vydavateľské údaje: IEEE 08.05.2024Vydané v Intelligent Systems and Computer Vision (Online) (08.05.2024)“… To surmount these obstacles, the study embarks on the optimization of a Variational Graph Autoencoder (VGAE…”
Získať plný text
Konferenčný príspevok.. -
7
Graph convolutional network based on self-attention variational autoencoder and capsule contrastive learning for aspect-based sentiment analysis
ISSN: 0957-4174Vydavateľské údaje: Elsevier Ltd 15.06.2025Vydané v Expert systems with applications (15.06.2025)“… In response to these issues, this article puts forward a hybrid graph convolutional network (GCN…”
Získať plný text
Journal Article -
8
DiffuScope: A diffusion-regularized autoencoder for spatial transcriptomic clustering
ISSN: 1476-9271, 1476-928X, 1476-928XVydavateľské údaje: England Elsevier Ltd 01.02.2026Vydané v Computational biology and chemistry (01.02.2026)“… To address this challenge, we propose DiffuScope, a clustering framework based on Graph Convolutional Variational Autoencoders (GC-VAE…”
Získať plný text
Journal Article -
9
Scalable Graph Convolutional Variational Autoencoders
Vydavateľské údaje: IEEE 19.05.2021Vydané v 2021 IEEE 15th International Symposium on Applied Computational Intelligence and Informatics (SACI) (19.05.2021)“… Graph variational autoencoders achieved competitive results on various graph-related modeling tasks (e.g…”
Získať plný text
Konferenčný príspevok.. -
10
CVAM: CNA Profile Inference of the Spatial Transcriptome Based on the VGAE and HMM
ISSN: 2218-273X, 2218-273XVydavateľské údaje: Switzerland MDPI AG 28.04.2023Vydané v Biomolecules (Basel, Switzerland) (28.04.2023)“…Tumors are often polyclonal due to copy number alteration (CNA) events. Through the CNA profile, we can understand the tumor heterogeneity and consistency. CNA…”
Získať plný text
Journal Article -
11
Multi-modal graph convolutional network for vessel trajectory prediction based on cooperative intention enhance using conditional variational autoencoder
ISSN: 0951-8320Vydavateľské údaje: Elsevier Ltd 01.03.2026Vydané v Reliability engineering & system safety (01.03.2026)“… of trajectory prediction. To address these challenges, we propose a cooperative intention enhance multi-modal graph convolutional network (CIE-MGCN…”
Získať plný text
Journal Article -
12
Handling information loss of graph convolutional networks in collaborative filtering
ISSN: 0306-4379, 1873-6076Vydavateľské údaje: Elsevier Ltd 01.11.2022Vydané v Information systems (Oxford) (01.11.2022)“… To solve the above problems, we propose Variational AutoEncoder-Enhanced Graph Convolutional Network (VE-GCN) for CF…”
Získať plný text
Journal Article -
13
A broadband oscillation source location method based on LSTM variational autoencoder and graph convolutional neural network
“… Therefore, this paper proposes a wideband oscillation disturbance source localization method based on LSTM variational autoencoder signal compression and graph convolutional neural network…”Vydavateľské údaje: The Institution of Engineering and Technology 2023
Získať plný text
Konferenčný príspevok.. -
14
Design of an Improved Model for Blockchain Forensics Using Graph Convolutional Networks and Variational Autoencoders
Vydavateľské údaje: IEEE 20.12.2024Vydané v 2024 International Conference on Artificial Intelligence and Quantum Computation-Based Sensor Application (ICAIQSA) (20.12.2024)“… detection should ideally be present. Current methods struggle to scale with and handle the graph-structured nature of data in blockchains, usually failing in the interpretability that's necessary for either trust or accountability…”
Získať plný text
Konferenčný príspevok.. -
15
Graph variational autoencoder with affinity propagation for community-aware anomaly detection in attributed networks
ISSN: 1568-4946Vydavateľské údaje: Elsevier B.V 01.01.2026Vydané v Applied soft computing (01.01.2026)“…) for community-aware ADAN. GVE-AP first employs a graph convolutional variational autoencoder to learn node embeddings from attributed networks…”
Získať plný text
Journal Article -
16
Recommender Systems Based on Variational Autoencoders and Graph Convolutional Neural Networks
ISBN: 9798582580331Vydavateľské údaje: ProQuest Dissertations & Theses 01.01.2018“…The high prevalence of online social networks along with the rapid growth of mobile devices makes people have an easier access to large amounts of online…”
Získať plný text
Dissertation -
17
Variational graph auto-encoders for miRNA-disease association prediction
ISSN: 1046-2023, 1095-9130, 1095-9130Vydavateľské údaje: United States Elsevier Inc 01.08.2021Vydané v Methods (San Diego, Calif.) (01.08.2021)“…•Graph convolutional networks obtain good representations for miRNAs and diseases.•Variational auto-encoders can deal with missing data in the miRNA-disease network…”
Získať plný text
Journal Article -
18
MODAPro: Explainable Heterogeneous Networks with Variational Graph Autoencoder for Mining Disease-Specific Functional Molecules and Pathways from Omics Data
ISSN: 1520-6882, 1520-6882Vydavateľské údaje: United States 28.10.2025Vydané v Analytical chemistry (Washington) (28.10.2025)“… To address these critical limitations, we introduce MODAPro, a biologically informed deep learning framework that synergistically integrates variational graph autoencoders (VAE…”
Zistit podrobnosti o prístupe
Journal Article -
19
VHGAE: Drug-Target Interaction Prediction Model Based on Heterogeneous Graph Variational Autoencoder
ISSN: 1913-2751, 1867-1462, 1867-1462Vydavateľské údaje: Germany 21.08.2025Vydané v Interdisciplinary sciences : computational life sciences (21.08.2025)“… the prediction performance of DTI. Therefore, we propose a method, called VHGAE, based on a heterogeneous graph variational autoencoder to predict drug-target interactions…”
Získať plný text
Journal Article -
20
Enhancing microbe-disease association prediction via multi-view graph convolution and latent feature learning
ISSN: 1476-9271, 1476-928X, 1476-928XVydavateľské údaje: England Elsevier Ltd 01.12.2025Vydané v Computational biology and chemistry (01.12.2025)“… MVGCVAE is the first model to synergistically integrate multi-view graph convolutional networks (GCNs…”
Získať plný text
Journal Article

