Výsledky vyhľadávania - variational graph convolutional autoencoder

  1. 1

    GVDTI: graph convolutional and variational autoencoders with attribute-level attention for drug–protein interaction prediction Autor Xuan, Ping, Fan, Mengsi, Cui, Hui, Zhang, Tiangang, Nakaguchi, Toshiya

    ISSN: 1467-5463, 1477-4054, 1477-4054
    Vydavateľské údaje: England Oxford University Press 17.01.2022
    Vydané v Briefings in bioinformatics (17.01.2022)
    “… First, a framework based on graph convolutional autoencoder is constructed to learn attention-enhanced topological embedding that integrates the topology structure…”
    Získať plný text
    Journal Article
  2. 2

    Anomaly Detection Based on Graph Convolutional Network–Variational Autoencoder Model Using Time-Series Vibration and Current Data Autor Choi, Seung-Hwan, An, Dawn, Lee, Inho, Lee, Suwoong

    ISSN: 2227-7390, 2227-7390
    Vydavateľské údaje: Basel MDPI AG 01.12.2024
    Vydané v Mathematics (Basel) (01.12.2024)
    “…This paper proposes a deep learning-based anomaly detection method using time-series vibration and current data, which were obtained from endurance tests on…”
    Získať plný text
    Journal Article
  3. 3

    Graph-Variational Convolutional Autoencoder-Based Fault Detection and Diagnosis for Photovoltaic Arrays Autor Arifeen, Murshedul, Petrovski, Andrei, Hasan, Md Junayed, Noman, Khandaker, Navid, Wasib Ul, Haruna, Auwal

    ISSN: 2075-1702, 2075-1702
    Vydavateľské údaje: Basel MDPI AG 01.12.2024
    Vydané v Machines (Basel) (01.12.2024)
    “… This paper introduces a deep learning model that combines a graph convolutional network with a variational autoencoder to diagnose faults in solar arrays…”
    Získať plný text
    Journal Article
  4. 4

    Subject Representation Learning from EEG using Graph Convolutional Variational Autoencoders Autor Mishra, Aditya, Samin, Ahnaf Mozib, Etemad, Ali, Hashemi, Javad

    ISSN: 2379-190X
    Vydavateľské údaje: IEEE 06.04.2025
    “…We propose GC-VASE, a graph convolutional-based variational autoencoder that leverages contrastive learning for subject representation learning from EEG data…”
    Získať plný text
    Konferenčný príspevok..
  5. 5
  6. 6

    Optimization of Graph Convolutional Networks with Variational Graph Autoencoder Architecture for 3D Face Reconstruction Task Autor Batarfi, Mahfoudh M., Mareboyana, Manohar

    ISSN: 2768-0754
    Vydavateľské údaje: IEEE 08.05.2024
    “… To surmount these obstacles, the study embarks on the optimization of a Variational Graph Autoencoder (VGAE…”
    Získať plný text
    Konferenčný príspevok..
  7. 7

    Graph convolutional network based on self-attention variational autoencoder and capsule contrastive learning for aspect-based sentiment analysis Autor Wang, Xinyue, Liu, Long, Chen, Zhuo, Wang, Haiyan, Yu, Bin

    ISSN: 0957-4174
    Vydavateľské údaje: Elsevier Ltd 15.06.2025
    Vydané v Expert systems with applications (15.06.2025)
    “… In response to these issues, this article puts forward a hybrid graph convolutional network (GCN…”
    Získať plný text
    Journal Article
  8. 8

    DiffuScope: A diffusion-regularized autoencoder for spatial transcriptomic clustering Autor Shi, Hua, Yi, Ding, Cui, Yang, Wang, Ruheng, Li, Yan, Ao, Chunyan, Guo, Ruihua, Zhang, Weihang, Peng, Tao, Le, Yuying, Cui, Yaxuan, Wei, Leyi

    ISSN: 1476-9271, 1476-928X, 1476-928X
    Vydavateľské údaje: England Elsevier Ltd 01.02.2026
    Vydané v Computational biology and chemistry (01.02.2026)
    “… To address this challenge, we propose DiffuScope, a clustering framework based on Graph Convolutional Variational Autoencoders (GC-VAE…”
    Získať plný text
    Journal Article
  9. 9

    Scalable Graph Convolutional Variational Autoencoders Autor Unyi, Daniel, Gyires-Toth, Balint

    Vydavateľské údaje: IEEE 19.05.2021
    “… Graph variational autoencoders achieved competitive results on various graph-related modeling tasks (e.g…”
    Získať plný text
    Konferenčný príspevok..
  10. 10

    CVAM: CNA Profile Inference of the Spatial Transcriptome Based on the VGAE and HMM Autor Ma, Jian, Guo, Jingjing, Fan, Zhiwei, Zhao, Weiling, Zhou, Xiaobo

    ISSN: 2218-273X, 2218-273X
    Vydavateľské údaje: Switzerland MDPI AG 28.04.2023
    Vydané v Biomolecules (Basel, Switzerland) (28.04.2023)
    “…Tumors are often polyclonal due to copy number alteration (CNA) events. Through the CNA profile, we can understand the tumor heterogeneity and consistency. CNA…”
    Získať plný text
    Journal Article
  11. 11

    Multi-modal graph convolutional network for vessel trajectory prediction based on cooperative intention enhance using conditional variational autoencoder Autor Jiang, Junhao, Zuo, Yi, Li, Zhiyuan

    ISSN: 0951-8320
    Vydavateľské údaje: Elsevier Ltd 01.03.2026
    “… of trajectory prediction. To address these challenges, we propose a cooperative intention enhance multi-modal graph convolutional network (CIE-MGCN…”
    Získať plný text
    Journal Article
  12. 12

    Handling information loss of graph convolutional networks in collaborative filtering Autor Xiong, Xin, Li, XunKai, Hu, YouPeng, Wu, YiXuan, Yin, Jian

    ISSN: 0306-4379, 1873-6076
    Vydavateľské údaje: Elsevier Ltd 01.11.2022
    Vydané v Information systems (Oxford) (01.11.2022)
    “… To solve the above problems, we propose Variational AutoEncoder-Enhanced Graph Convolutional Network (VE-GCN) for CF…”
    Získať plný text
    Journal Article
  13. 13

    A broadband oscillation source location method based on LSTM variational autoencoder and graph convolutional neural network Autor Li, C., Wang, Y., Zheng, Z.

    Vydavateľské údaje: The Institution of Engineering and Technology 2023
    “… Therefore, this paper proposes a wideband oscillation disturbance source localization method based on LSTM variational autoencoder signal compression and graph convolutional neural network…”
    Získať plný text
    Konferenčný príspevok..
  14. 14

    Design of an Improved Model for Blockchain Forensics Using Graph Convolutional Networks and Variational Autoencoders Autor Bokade, Sweta A., Sharma, V.K., Manjre, Bhushan M.

    Vydavateľské údaje: IEEE 20.12.2024
    “… detection should ideally be present. Current methods struggle to scale with and handle the graph-structured nature of data in blockchains, usually failing in the interpretability that's necessary for either trust or accountability…”
    Získať plný text
    Konferenčný príspevok..
  15. 15

    Graph variational autoencoder with affinity propagation for community-aware anomaly detection in attributed networks Autor Cao, Zhijie, Yang, Chengkun, Fan, Xiaoqing, Li, Lingjie, Lin, Qiuzhen, Li, Jianqiang, Ma, Lijia

    ISSN: 1568-4946
    Vydavateľské údaje: Elsevier B.V 01.01.2026
    Vydané v Applied soft computing (01.01.2026)
    “…) for community-aware ADAN. GVE-AP first employs a graph convolutional variational autoencoder to learn node embeddings from attributed networks…”
    Získať plný text
    Journal Article
  16. 16

    Recommender Systems Based on Variational Autoencoders and Graph Convolutional Neural Networks Autor Kang, Peng

    ISBN: 9798582580331
    Vydavateľské údaje: ProQuest Dissertations & Theses 01.01.2018
    “…The high prevalence of online social networks along with the rapid growth of mobile devices makes people have an easier access to large amounts of online…”
    Získať plný text
    Dissertation
  17. 17

    Variational graph auto-encoders for miRNA-disease association prediction Autor Ding, Yulian, Tian, Li-Ping, Lei, Xiujuan, Liao, Bo, Wu, Fang-Xiang

    ISSN: 1046-2023, 1095-9130, 1095-9130
    Vydavateľské údaje: United States Elsevier Inc 01.08.2021
    Vydané v Methods (San Diego, Calif.) (01.08.2021)
    “…•Graph convolutional networks obtain good representations for miRNAs and diseases.•Variational auto-encoders can deal with missing data in the miRNA-disease network…”
    Získať plný text
    Journal Article
  18. 18

    MODAPro: Explainable Heterogeneous Networks with Variational Graph Autoencoder for Mining Disease-Specific Functional Molecules and Pathways from Omics Data Autor Zhao, Jinhui, He, Jiarui, Guan, Pengwei, Bao, Han, Zhao, Xinjie, Zhao, Chunxia, Qin, Wangshu, Lu, Xin, Xu, Guowang

    ISSN: 1520-6882, 1520-6882
    Vydavateľské údaje: United States 28.10.2025
    Vydané v Analytical chemistry (Washington) (28.10.2025)
    “… To address these critical limitations, we introduce MODAPro, a biologically informed deep learning framework that synergistically integrates variational graph autoencoders (VAE…”
    Zistit podrobnosti o prístupe
    Journal Article
  19. 19

    VHGAE: Drug-Target Interaction Prediction Model Based on Heterogeneous Graph Variational Autoencoder Autor Zhang, Chen, Sun, Jiaqi, Xing, Linlin, Zhang, Longbo, Cai, Hongzhen, Che, Kai

    ISSN: 1913-2751, 1867-1462, 1867-1462
    Vydavateľské údaje: Germany 21.08.2025
    “… the prediction performance of DTI. Therefore, we propose a method, called VHGAE, based on a heterogeneous graph variational autoencoder to predict drug-target interactions…”
    Získať plný text
    Journal Article
  20. 20

    Enhancing microbe-disease association prediction via multi-view graph convolution and latent feature learning Autor Wang, Bo, Wu, Peilong, Du, Xiaoxin, Zhang, Chunyu, Fu, Shanshan, Sun, Tang, Yang, Xue

    ISSN: 1476-9271, 1476-928X, 1476-928X
    Vydavateľské údaje: England Elsevier Ltd 01.12.2025
    Vydané v Computational biology and chemistry (01.12.2025)
    “… MVGCVAE is the first model to synergistically integrate multi-view graph convolutional networks (GCNs…”
    Získať plný text
    Journal Article