Výsledky vyhľadávania - theory of computation theory and algorithms for application domains machinery learning theory

  1. 1

    Structured Learning with Parsimony in Measurements and Computations: Theory, Algorithms, and Applications Autor Li, Xingguo

    ISBN: 9780438353886, 0438353889
    Vydavateľské údaje: ProQuest Dissertations & Theses 01.01.2018
    “…In modern “Big Data” applications, structured learning is the most widely employed methodology…”
    Získať plný text
    Dissertation
  2. 2

    Multi-Label Active Learning Algorithms for Image Classification: Overview and Future Promise Autor Wu, Jian, Sheng, Victor S, Zhang, Jing, Li, Hua, Dadakova, Tetiana, Swisher, Christine Leon, Cui, Zhiming, Zhao, Pengpeng

    ISSN: 0360-0300
    Vydavateľské údaje: United States 01.06.2020
    Vydané v ACM computing surveys (01.06.2020)
    “… Accordingly, multi-label active learning is becoming an important research direction. In this work, we first review existing multi-label active learning algorithms for image classification…”
    Zistit podrobnosti o prístupe
    Journal Article
  3. 3

    Multi-Structural Games and Number of Quantifiers Autor Fagin, Ronald, Lenchner, Jonathan, Regan, Kenneth W., Vyas, Nikhil

    Vydavateľské údaje: IEEE 29.06.2021
    “… to distinguish linear orders of different sizes, and develop machinery for analyzing structures beyond linear orders…”
    Získať plný text
    Konferenčný príspevok..
  4. 4

    SLIM: a Scalable and Interpretable Light-weight Fault Localization Algorithm for Imbalanced Data in Microservice Autor Ren, Rui, Yang, Jingbang, Yang, Linxiao, Gu, Xinyue, Sun, Liang

    ISSN: 2643-1572
    Vydavateľské údaje: ACM 27.10.2024
    “…) approach to select rules iteratively, maximizing a non-monotone submodular lower bound. Compared with existing fault localization algorithms, our algorithm can adapt…”
    Získať plný text
    Konferenčný príspevok..
  5. 5

    Accelerating Decision-Tree-Based Inference Through Adaptive Parallelization Autor Van Lunteren, Jan

    Vydavateľské údaje: IEEE 21.10.2023
    “…Gradient-boosted trees and random forests are among the most popular machine learning algorithms…”
    Získať plný text
    Konferenčný príspevok..
  6. 6

    AutoDW: Automatic Data Wrangling Leveraging Large Language Models Autor Liu, Lei, Hasegawa, So, Sampat, Shailaja Keyur, Xenochristou, Maria, Chen, Wei-Peng, Kato, Takashi, Kakibuchi, Taisei, Asai, Tatsuya

    ISSN: 2643-1572
    Vydavateľské údaje: ACM 27.10.2024
    “…Data wrangling is a critical yet often labor-intensive process, essential for transforming raw data into formats suitable for downstream tasks such as machine learning or data analysis…”
    Získať plný text
    Konferenčný príspevok..
  7. 7

    Activation Sequence Caching: High-Throughput and Memory-Efficient Generative Inference with a Single GPU Autor Kim, Sowoong, Sim, Eunyeong, Shin, Youngsam, Cho, YeonGon, Baek, Woongki

    Vydavateľské údaje: ACM 13.10.2024
    “… To bridge this gap, this work presents an in-depth characterization study of KVC, which demonstrates that KVC makes a suboptimal trade-off between computations and communications…”
    Získať plný text
    Konferenčný príspevok..
  8. 8

    Self-Supervised Representation Learning and Temporal-Spectral Feature Fusion for Bed Occupancy Detection Autor Song, Yingjian, Pitafi, Zaid Farooq, Dou, Fei, Sun, Jin, Zhang, Xiang, Phillips, Bradley G, Song, Wenzhan

    ISSN: 2474-9567, 2474-9567
    Vydavateľské údaje: United States 01.09.2024
    “… This paper introduces SeismoDot, which consists of a self-supervised learning module and a spectral-temporal feature fusion module for bed occupancy detection…”
    Zistit podrobnosti o prístupe
    Journal Article
  9. 9

    MDLoader: A Hybrid Model-Driven Data Loader for Distributed Graph Neural Network Training Autor Bae, Jonghyun, Choi, Jong Youl, Pasini, Massimiliano Lupo, Mehta, Kshitij, Zhang, Pei, Ibrahim, Khaled Z.

    Vydavateľské údaje: IEEE 17.11.2024
    “…Scalable data management is essential for processing large scientific dataset on HPC platforms for distributed deep learning…”
    Získať plný text
    Konferenčný príspevok..
  10. 10

    ALISE: Accelerating Large Language Model Serving with Speculative Scheduling Autor Zhao, Youpeng, Wang, Jun

    ISSN: 1558-2434
    Vydavateľské údaje: ACM 27.10.2024
    “…). As exemplified by ChatGPT, LLM-based applications necessitate minimal response latency and maximal throughput for inference serving…”
    Získať plný text
    Konferenčný príspevok..
  11. 11

    Bayesian synthesis of probabilistic programs for automatic data modeling Autor Saad, Feras A., Cusumano-Towner, Marco F., Schaechtle, Ulrich, Rinard, Martin C., Mansinghka, Vikash K.

    ISSN: 2475-1421, 2475-1421
    Vydavateľské údaje: New York, NY, USA ACM 02.01.2019
    “… We also derive a general class of synthesis algorithms for domain-specific languages specified by probabilistic context-free grammars and establish the soundness of our approach for these languages…”
    Získať plný text
    Journal Article
  12. 12

    Local Higher-Order Graph Clustering Autor Yin, Hao, Benson, Austin R, Leskovec, Jure, Gleich, David F

    ISSN: 2154-817X
    Vydavateľské údaje: United States 01.08.2017
    “…Local graph clustering methods aim to find a cluster of nodes by exploring a small region of the graph. These methods are attractive because they enable…”
    Zistit podrobnosti o prístupe
    Journal Article
  13. 13

    Distinguishing Hidden Markov Chains Autor Kiefer, Stefan, Sistla, A. Prasad

    ISBN: 9781450343916, 1450343910
    Vydavateľské údaje: New York, NY, USA ACM 05.07.2016
    “… Motivated by applications in stochastic runtime verification, we consider the problem of distinguishing two given HMCs based on a single observation sequence that one of the HMCs generates…”
    Získať plný text
    Konferenčný príspevok..
  14. 14
  15. 15

    Linear Scheduling of Big Data Streams on Multiprocessor Sets in the Cloud Autor Tantalaki, Nicoleta, Souravlas, Stavros, Roumeliotis, Manos, Katsavounis, Stefanos

    ISBN: 1450369340, 9781450369343
    Vydavateľské údaje: New York, NY, USA ACM 14.10.2019
    “… (dynamically or not) and route streaming data between them. Efficient scheduling of processing tasks of data flows can reduce application latencies and eliminate network congestion…”
    Získať plný text
    Konferenčný príspevok..
  16. 16

    A Memory-Efficient Markov Decision Process Computation Framework Using BDD-based Sampling Representation Autor Zhou, He, Hu, Jiang, Khatri, Sunil P., Liu, Frank

    Vydavateľské údaje: ACM 01.06.2019
    “…* Theory of computation \rightarrow Data compression; Parallel algorithms; Sequential decision making; * Mathematics of computing \rightarrowBayesian computation;…”
    Získať plný text
    Konferenčný príspevok..
  17. 17

    RL-Fill: Timing-Aware Fill Insertion Using Reinforcement Learning Autor Cho, Jinoh, Park, Seonghyeon, Lee, Jakang, Lee, Sung-Yun, Ahn, Jinmo, Kang, Seokhyeong

    ISSN: 1558-2434
    Vydavateľské údaje: ACM 27.10.2024
    “…We introduce RL-Fill, a novel reinforcement learning framework for timing-aware fill insertion…”
    Získať plný text
    Konferenčný príspevok..
  18. 18

    Robust Implementation of Retrieval-Augmented Generation on Edge-Based Computing-in-Memory Architectures Autor Qin, Ruiyang, Yan, Zheyu, Zeng, Dewen, Jia, Zhenge, Liu, Dancheng, Liu, Jianbo, Abbasi, Ahmed, Zheng, Zhi, Cao, Ningyuan, Ni, Kai, Xiong, Jinjun, Shi, Yiyu

    ISSN: 1558-2434
    Vydavateľské údaje: ACM 27.10.2024
    “… Although such learning methods can be optimized to reduce resource utilization, the overall required resources remain a heavy burden on edge devices…”
    Získať plný text
    Konferenčný príspevok..
  19. 19

    Laminar 2.0: Serverless Stream Processing with Enhanced Code Search and Recommendations Autor Rotchford, Daniel, Evans, Samuel, Filgueira, Rosa

    Vydavateľské údaje: IEEE 17.11.2024
    “… Building on Laminar 1.0, this version introduces improved dependency management, client-server functionality, and advanced deep learning models for semantic search…”
    Získať plný text
    Konferenčný príspevok..
  20. 20

    Using Static Analysis to Aid Monolith to Microservice System Transformation: Tuning Fuzzy c-Means in a VAE-Based GNN Approach Autor Sooksatra, Korn, Hossain Chy, Md Showkat, Arju, Md Ashfakur Rahman, Cerny, Tomas, Rivas, Pablo

    ISSN: 2151-0849
    Vydavateľské údaje: ACM 27.10.2024
    “… This paper explores a machine learning-driven approach to decompose monolithic systems into microservices, targeting maintainability and modularization…”
    Získať plný text
    Konferenčný príspevok..