Výsledky vyhľadávania - standard stochastic gradient algorithm

Upresniť hľadanie
  1. 1

    Particle filtering-based recursive identification for controlled auto-regressive systems with quantised output Autor Ding, Jie, Chen, Jiazhong, Lin, Jinxing, Jiang, Guoping

    ISSN: 1751-8644, 1751-8652
    Vydavateľské údaje: The Institution of Engineering and Technology 24.09.2019
    Vydané v IET control theory & applications (24.09.2019)
    “… In this study, a recursive identification algorithm is proposed based on the auxiliary model principle by modifying the standard stochastic gradient algorithm…”
    Získať plný text
    Journal Article
  2. 2

    Zeroth-Order Nonconvex Stochastic Optimization: Handling Constraints, High Dimensionality, and Saddle Points Autor Balasubramanian, Krishnakumar, Ghadimi, Saeed

    ISSN: 1615-3375, 1615-3383
    Vydavateľské údaje: New York Springer US 01.02.2022
    “… to the standard stochastic gradient algorithm using only zeroth-order information. To facilitate zeroth-order optimization in high dimensions, we explore the advantages of structural sparsity assumptions. Specifically…”
    Získať plný text
    Journal Article
  3. 3

    Convergence Analysis of Weighted Stochastic Gradient Identification Algorithms Based on Latest‐Estimation for ARX Models Autor Wu, Ai‐Guo, Fu, Fang‐Zhou, Dong, Rui‐Qi

    ISSN: 1561-8625, 1934-6093
    Vydavateľské údaje: Hoboken Wiley Subscription Services, Inc 01.01.2019
    Vydané v Asian journal of control (01.01.2019)
    “…In this paper, weighted stochastic gradient (WSG) algorithms for ARX models are proposed by modifying the standard stochastic gradient identification algorithms…”
    Získať plný text
    Journal Article
  4. 4

    Partially Coupled Stochastic Gradient Identification Methods for Non-Uniformly Sampled Systems Autor Feng Ding, Guangjun Liu, Liu, Xiaoping Peter

    ISSN: 0018-9286, 1558-2523
    Vydavateľské údaje: New York, NY IEEE 01.08.2010
    “…) algorithm is proposed to estimate the model parameters with high computational efficiency compared with the standard stochastic gradient (SG) algorithm…”
    Získať plný text
    Journal Article
  5. 5

    A proportional-integral-derivative-incorporated stochastic gradient descent-based latent factor analysis model Autor Li, Jinli, Yuan, Ye, Ruan, Tao, Chen, Jia, Luo, Xin

    ISSN: 0925-2312, 1872-8286
    Vydavateľské údaje: Elsevier B.V 28.02.2021
    Vydané v Neurocomputing (Amsterdam) (28.02.2021)
    “…) is frequently adopted as the learning algorithm. However, a standard SGD algorithm updates a decision parameter with the stochastic gradient on the instant loss only, without considering information described by prior updates…”
    Získať plný text
    Journal Article
  6. 6

    Stochastic Gradient Markov Chain Monte Carlo Autor Nemeth, Christopher, Fearnhead, Paul

    ISSN: 0162-1459, 1537-274X, 1537-274X
    Vydavateľské údaje: Alexandria Taylor & Francis 02.01.2021
    “… In this article, we focus on a particular class of scalable Monte Carlo algorithms, stochastic gradient Markov chain Monte Carlo (SGMCMC…”
    Získať plný text
    Journal Article
  7. 7

    Almost sure convergence rates of stochastic proximal gradient descent algorithm Autor Liang, Yuqing, Xu, Dongpo

    ISSN: 0233-1934, 1029-4945
    Vydavateľské údaje: Taylor & Francis 02.08.2024
    Vydané v Optimization (02.08.2024)
    “…Stochastic proximal gradient descent (Prox-SGD) is a standard optimization algorithm for solving stochastic composite optimization problems in machine learning…”
    Získať plný text
    Journal Article
  8. 8

    Guided Stochastic Gradient Descent Algorithm for inconsistent datasets Autor Sharma, Anuraganand

    ISSN: 1568-4946, 1872-9681
    Vydavateľské údaje: Elsevier B.V 01.12.2018
    Vydané v Applied soft computing (01.12.2018)
    “…Stochastic Gradient Descent (SGD) Algorithm, despite its simplicity, is considered an effective and default standard optimization algorithm for machine learning…”
    Získať plný text
    Journal Article
  9. 9

    Differentially private stochastic gradient descent via compression and memorization Autor Phong, Le Trieu, Phuong, Tran Thi

    ISSN: 1383-7621, 1873-6165
    Vydavateľské údaje: Elsevier B.V 01.02.2023
    Vydané v Journal of systems architecture (01.02.2023)
    “… Our differentially private algorithm, called dp-memSGD for short, converges mathematically at the same rate of 1/T as standard stochastic gradient descent (SGD…”
    Získať plný text
    Journal Article
  10. 10

    Fastest rates for stochastic mirror descent methods Autor Hanzely, Filip, Richtárik, Peter

    ISSN: 0926-6003, 1573-2894
    Vydavateľské údaje: New York Springer US 01.07.2021
    “… We propose and analyze two new algorithms: Relative Randomized Coordinate Descent (relRCD) and Relative Stochastic Gradient Descent (relSGD…”
    Získať plný text
    Journal Article
  11. 11

    Linear mixed effects models for non-Gaussian continuous repeated measurement data Autor Asar, Özgür, Bolin, David, Diggle, Peter J., Wallin, Jonas

    ISSN: 0035-9254, 1467-9876, 1467-9876
    Vydavateľské údaje: Oxford Wiley 01.11.2020
    “… A standard framework for analysing data of this kind is a linear Gaussian mixed effects model within which the outcome variable can be decomposed into fixed effects, time invariant and time-varying…”
    Získať plný text
    Journal Article
  12. 12

    Adaptive Stochastic Gradient Descent Optimisation for Image Registration Autor Klein, Stefan, Pluim, Josien P. W., Staring, Marius, Viergever, Max A.

    ISSN: 0920-5691, 1573-1405
    Vydavateľské údaje: Boston Springer US 01.03.2009
    “… The proposed adaptive stochastic gradient descent (ASGD) method is compared to a standard, non-adaptive Robbins-Monro (RM) algorithm…”
    Získať plný text
    Journal Article
  13. 13

    A Nonlinear PID-Incorporated Adaptive Stochastic Gradient Descent Algorithm for Latent Factor Analysis Autor Li, Jinli, Luo, Xin, Yuan, Ye, Gao, Shangce

    ISSN: 1545-5955, 1558-3783
    Vydavateľské údaje: IEEE 01.07.2024
    “… from them. However, a standard SGD algorithm updates a latent factor based on the current stochastic gradient only, without the considerations on the past information, making a resultant model suffer from slow convergence…”
    Získať plný text
    Journal Article
  14. 14

    An Efficient Stochastic Gradient Descent Algorithm to Maximize the Coverage of Cellular Networks Autor Liu, Yaxi, Huangfu, Wei, Zhang, Haijun, Long, Keping

    ISSN: 1536-1276, 1558-2248
    Vydavateľské údaje: New York IEEE 01.07.2019
    “… A standard gradient descent algorithm and its improved version, namely a Stochastic Gradient Descent (SGD…”
    Získať plný text
    Journal Article
  15. 15

    A Fuzzy PID-Incorporated Stochastic Gradient Descent Algorithm for Fast and Accurate Latent Factor Analysis Autor Yuan, Ye, Li, Jinli, Luo, Xin

    ISSN: 1063-6706, 1941-0034
    Vydavateľské údaje: New York IEEE 01.07.2024
    Vydané v IEEE transactions on fuzzy systems (01.07.2024)
    “… However, an SGD-based LFA model is often stacked by slow convergence since a standard SGD algorithm updates a single latent factor depending on the stochastic gradient of current instance learning…”
    Získať plný text
    Journal Article
  16. 16

    Latent Factor-Based Recommenders Relying on Extended Stochastic Gradient Descent Algorithms Autor Luo, Xin, Wang, Dexian, Zhou, MengChu, Yuan, Huaqiang

    ISSN: 2168-2216, 2168-2232
    Vydavateľské údaje: New York IEEE 01.02.2021
    “… Stochastic gradient descent (SGD) is a highly efficient algorithm for building an LF model…”
    Získať plný text
    Journal Article
  17. 17

    Model-free control of nonlinear stochastic systems with discrete-time measurements Autor Spall, J.C., Cristion, J.A.

    ISSN: 0018-9286
    Vydavateľské údaje: New York, NY IEEE 01.09.1998
    “… This paper considers the use of the simultaneous perturbation stochastic approximation algorithm which requires only system measurements…”
    Získať plný text
    Journal Article
  18. 18

    Stochastic Gradient Made Stable: A Manifold Propagation Approach for Large-Scale Optimization Autor Mu, Yadong, Liu, Wei, Liu, Xiaobai, Fan, Wei

    ISSN: 1041-4347, 1558-2191
    Vydavateľské údaje: New York IEEE 01.02.2017
    “… To improve the stability of stochastic gradient, recent years have witnessed the proposal of several semi-stochastic gradient descent algorithms, which distinguish themselves from standard SGD…”
    Získať plný text
    Journal Article
  19. 19

    Learning Error Refinement in Stochastic Gradient Descent-Based Latent Factor Analysis via Diversified PID Controllers Autor Li, Jinli, Yuan, Ye, Luo, Xin

    ISSN: 2471-285X, 2471-285X
    Vydavateľské údaje: Piscataway IEEE 01.10.2025
    “… Unfortunately, a standard SGD algorithm trains a single latent factor relying on the stochastic gradient related to the current learning error only, leading to a slow convergence rate…”
    Získať plný text
    Journal Article
  20. 20

    Device Specifications for Neural Network Training with Analog Resistive Cross‐Point Arrays Using Tiki‐Taka Algorithms Autor Byun, Jinho, Kim, Seungkun, Kim, Doyoon, Lee, Jimin, Ji, Wonjae, Kim, Seyoung

    ISSN: 2640-4567, 2640-4567
    Vydavateľské údaje: Weinheim John Wiley & Sons, Inc 01.05.2025
    Vydané v Advanced intelligent systems (01.05.2025)
    “…Recently, specialized training algorithms for analog cross‐point array‐based neural network accelerators have been introduced to counteract device non…”
    Získať plný text
    Journal Article