Výsledky vyhľadávania - multichannel autoencoder priors

  • Zobrazené výsledky 1 - 12 z 12
Upresniť hľadanie
  1. 1

    Accelerated model‐based iterative reconstruction strategy for sparse‐view photoacoustic tomography aided by multi‐channel autoencoder priors Autor Song, Xianlin, Zhong, Wenhua, Li, Zilong, Peng, Shuchong, Zhang, Hongyu, Wang, Guijun, Dong, Jiaqing, Liu, Xuan, Xu, Xiaoling, Liu, Qiegen

    ISSN: 1864-063X, 1864-0648, 1864-0648
    Vydavateľské údaje: Weinheim WILEY‐VCH Verlag GmbH & Co. KGaA 01.01.2024
    Vydané v Journal of biophotonics (01.01.2024)
    “…‐channel autoencoder priors was proposed. A multi‐channel denoising autoencoder network was designed to learn prior information, which provides constraints for model…”
    Získať plný text
    Journal Article
  2. 2

    Fusing multichannel autoencoders with dynamic global loss for self-supervised fault diagnosis Autor Li, Chuan, Xiong, Manjun, Shen, Hongmeng, Bai, Yun, Yang, Shuai, Pu, Zhiqiang

    ISSN: 0166-3615
    Vydavateľské údaje: Elsevier B.V 01.01.2025
    Vydané v Computers in industry (01.01.2025)
    “… Considering the randomness and drift of fault features, this paper proposes fusing multichannel autoencoders with dynamic global loss (FMA-DGL…”
    Získať plný text
    Journal Article
  3. 3

    Rejecting Unknown Gestures Based on Surface-Electromyography Using Variational Autoencoder Autor Dai, Qingfeng, Wong, Yongkang, Kankanhalli, Mohan, Li, Xiangdong, Geng, Weidong

    ISSN: 1534-4320, 1558-0210, 1558-0210
    Vydavateľské údaje: United States IEEE 2024
    “… In this work, we propose a novel variational autoencoder based approach for open-set gesture recognition based on sparse multichannel sEMG signals…”
    Získať plný text
    Journal Article
  4. 4

    Semi-Supervised Multichannel Speech Enhancement With a Deep Speech Prior Autor Sekiguchi, Kouhei, Bando, Yoshiaki, Nugraha, Aditya Arie, Yoshii, Kazuyoshi, Kawahara, Tatsuya

    ISSN: 2329-9290, 2329-9304
    Vydavateľské údaje: Piscataway IEEE 01.12.2019
    “…This paper describes a semi-supervised multichannel speech enhancement method that uses clean speech data for prior training…”
    Získať plný text
    Journal Article
  5. 5

    Mineralized-Anomaly Identification Based on Convolutional Sparse Autoencoder Network and Isolated Forest Autor Yang, Na, Zhang, Zhenkai, Yang, Jianhua, Hong, Zenglin

    ISSN: 1520-7439, 1573-8981
    Vydavateľské údaje: New York Springer US 01.02.2023
    “…According to the characteristic that mineralized-anomaly samples have larger reconstruction errors, traditional autoencoder networks have been applied widely in mineralized-anomaly identification…”
    Získať plný text
    Journal Article
  6. 6

    REDAEP: Robust and Enhanced Denoising Autoencoding Prior for Sparse-View CT Reconstruction Autor Zhang, Fengqin, Zhang, Minghui, Qin, Binjie, Zhang, Yi, Xu, Zichen, Liang, Dong, Liu, Qiegen

    ISSN: 2469-7311, 2469-7303
    Vydavateľské údaje: Piscataway IEEE 01.01.2021
    “… However, less projection views usually lead to low-resolution images. To address this issue, we propose a robust and enhanced mechanism on the basis of denoising autoencoding prior, or robust EDAEP (REDAEP…”
    Získať plný text
    Journal Article
  7. 7

    SPAER: Sparse Deep Convolutional Autoencoder Model to Extract Low Dimensional Imaging Biomarkers for Early Detection of Breast Cancer Using Dynamic Thermography Autor Yousefi, Bardia, Akbari, Hamed, Hershman, Michelle, Kawakita, Satoru, Fernandes, Henrique C., Ibarra-Castanedo, Clemente, Ahadian, Samad, Maldague, Xavier P. V.

    ISSN: 2076-3417, 2076-3417
    Vydavateľské údaje: Basel MDPI AG 01.04.2021
    Vydané v Applied sciences (01.04.2021)
    “…) prior to mammography. In this study, we propose a sparse deep convolutional autoencoder model named SPAER to extract low-dimensional deep thermomics to aid breast cancer diagnosis…”
    Získať plný text
    Journal Article
  8. 8

    Cauchy Multichannel Speech Enhancement with a Deep Speech Prior Autor Fontaine, Mathieu, Nugraha, Aditya Arie, Badeau, Roland, Yoshii, Kazuyoshi, Liutkus, Antoine

    ISSN: 2076-1465
    Vydavateľské údaje: EURASIP 01.09.2019
    “…We propose a semi-supervised multichannel speech enhancement system based on a probabilistic model which assumes that both speech and noise follow the heavy-tailed multi-variate complex Cauchy distribution…”
    Získať plný text
    Konferenčný príspevok..
  9. 9

    A Flow-Based Deep Latent Variable Model for Speech Spectrogram Modeling and Enhancement Autor Nugraha, Aditya Arie, Sekiguchi, Kouhei, Yoshii, Kazuyoshi

    ISSN: 2329-9290, 2329-9304
    Vydavateľské údaje: Piscataway IEEE 2020
    “…This article describes a deep latent variable model of speech power spectrograms and its application to semi-supervised speech enhancement with a deep speech prior…”
    Získať plný text
    Journal Article
  10. 10

    Highly undersampled magnetic resonance imaging reconstruction using autoencoding priors Autor Liu, Qiegen, Yang, Qingxin, Cheng, Huitao, Wang, Shanshan, Zhang, Minghui, Liang, Dong

    ISSN: 0740-3194, 1522-2594, 1522-2594
    Vydavateľské údaje: United States Wiley Subscription Services, Inc 01.01.2020
    Vydané v Magnetic resonance in medicine (01.01.2020)
    “… Methods A denoising autoencoder (DAE) network is leveraged as an explicit prior to address the highly undersampling MR image reconstruction problem…”
    Získať plný text
    Journal Article
  11. 11

    Unfolding Neural Networks for Compressive Multichannel Blind Deconvolution Autor Tolooshams, Bahareh, Mulleti, Satish, Ba, Demba, Eldar, Yonina C.

    ISSN: 2379-190X
    Vydavateľské údaje: IEEE 06.06.2021
    “…We propose a learned-structured unfolding neural network for the problem of compressive sparse multichannel blind-deconvolution…”
    Získať plný text
    Konferenčný príspevok..
  12. 12

    Unfolding Neural Networks for Compressive Multichannel Blind Deconvolution Autor Tolooshams, Bahareh, Mulleti, Satish, Demba Ba, Eldar, Yonina C

    ISSN: 2331-8422
    Vydavateľské údaje: Ithaca Cornell University Library, arXiv.org 12.02.2021
    Vydané v arXiv.org (12.02.2021)
    “…We propose a learned-structured unfolding neural network for the problem of compressive sparse multichannel blind-deconvolution…”
    Získať plný text
    Paper