Výsledky vyhľadávania - deep convolutional autoencoder (ConvAE)

Alternativne vyhľadávanie:

  • Zobrazené výsledky 1 - 17 z 17
Upresniť hľadanie
  1. 1

    Impartially Validated Multiple Deep-Chain Models to Detect COVID-19 in Chest X-ray Using Latent Space Radiomics Autor Yousefi, Bardia, Kawakita, Satoru, Amini, Arya, Akbari, Hamed, Advani, Shailesh M., Akhloufi, Moulay, Maldague, Xavier P. V., Ahadian, Samad

    ISSN: 2077-0383, 2077-0383
    Vydavateľské údaje: Switzerland MDPI AG 14.07.2021
    Vydané v Journal of clinical medicine (14.07.2021)
    “… First, we used a 2D U-Net model to segment the lung lobes. Then, we extracted deep latent space radiomics by applying deep convolutional autoencoder (ConvAE…”
    Získať plný text
    Journal Article
  2. 2

    ConvAE-LSTM: Convolutional Autoencoder Long Short-Term Memory Network for Smartphone-Based Human Activity Recognition Autor Thakur, Dipanwita, Biswas, Suparna, Ho, Edmond S. L., Chattopadhyay, Samiran

    ISSN: 2169-3536, 2169-3536
    Vydavateľské údaje: Piscataway IEEE 2022
    Vydané v IEEE access (2022)
    “…, accelerometer and gyroscope data. Convolutional neural networks (CNNs), autoencoders (AEs), and long short-term memory (LSTM…”
    Získať plný text
    Journal Article
  3. 3

    ConvAE: A New Channel Autoencoder Based on Convolutional Layers and Residual Connections Autor Ji, Dong Jin, Park, Jinsol, Cho, Dong-Ho

    ISSN: 1089-7798, 1558-2558
    Vydavateľské údaje: New York IEEE 01.10.2019
    Vydané v IEEE communications letters (01.10.2019)
    “…In this letter, we propose ConvAE, a new channel autoencoder structure. ConvAE uses residual blocks with convolutional layers…”
    Získať plný text
    Journal Article
  4. 4

    Interpretable regional meteorological feature extraction enhances deep learning for extended 120-h PM2.5 forecasting Autor Liu, Xinyi, Pu, Xueting, Lu, Chengwei, Zhang, Han, Li, Tao, Grieneisen, Michael L., Li, Jucheng, Ma, Ning, Yan, Chang, Zhan, Yu, Yang, Fumo

    ISSN: 0959-6526
    Vydavateľské údaje: Elsevier Ltd 10.12.2024
    Vydané v Journal of cleaner production (10.12.2024)
    “… We used convolutional autoencoders (ConvAEs) to extract regional meteorological features (RMFs…”
    Získať plný text
    Journal Article
  5. 5

    Anomaly Detection in Videos Using Optical Flow and Convolutional Autoencoder Autor Duman, Elvan, Erdem, Osman Ayhan

    ISSN: 2169-3536, 2169-3536
    Vydavateľské údaje: Piscataway IEEE 2019
    Vydané v IEEE access (2019)
    “… In this paper, we propose a framework (OF-ConvAE-LSTM) to detect anomalies using Convolutional Autoencoder and Convolutional Long Short-Term Memory in an unsupervised manner…”
    Získať plný text
    Journal Article
  6. 6

    An Application of Deep Learning Technique to Improve Subseasonal to Seasonal Rainfall Forecast over Java Island, Indonesia Autor Raharja, Adyaksa Budi, Faqih, Akhmad, Setiawan, Amsari Mudzakir

    ISSN: 2086-4639, 2460-5824
    Vydavateľské údaje: Bogor Agricultural University 15.11.2022
    “… However, the forecast remains challenging due to its lack of skill. This study applies Convolutional AutoEncoders (ConvAE…”
    Získať plný text
    Journal Article
  7. 7

    Watershed groundwater level multistep ahead forecasts by fusing convolutional-based autoencoder and LSTM models Autor Kow, Pu-Yun, Liou, Jia-Yi, Sun, Wei, Chang, Li-Chiu, Chang, Fi-John

    ISSN: 0301-4797, 1095-8630, 1095-8630
    Vydavateľské údaje: England Elsevier Ltd 01.02.2024
    Vydané v Journal of environmental management (01.02.2024)
    “… This study proposed a novel ConvAE-LSTM model, which fused a Convolutional-based Autoencoder model (ConvAE…”
    Získať plný text
    Journal Article
  8. 8

    Latent space representation of electronic health records for clustering dialysis-associated kidney failure subtypes Autor Onthoni, Djeane Debora, Lin, Ming-Yen, Lan, Kuei-Yuan, Huang, Tsung-Hsien, Lin, Hong-Ming, Chiou, Hung-Yi, Hsu, Chih-Cheng, Chung, Ren-Hua

    ISSN: 0010-4825, 1879-0534, 1879-0534
    Vydavateľské údaje: United States Elsevier Ltd 01.12.2024
    Vydané v Computers in biology and medicine (01.12.2024)
    “… This matrix structure was achieved using a unique data cutting method. Latent space transformation was facilitated using a convolution autoencoder (ConvAE…”
    Získať plný text
    Journal Article
  9. 9

    Unsupervised anomaly detection for pome fruit quality inspection using X-ray radiography Autor Tempelaere, Astrid, He, Jiaqi, Van Doorselaer, Leen, Verboven, Pieter, Nicolai, Bart, Valerio Giuffrida, Mario

    ISSN: 0168-1699
    Vydavateľské údaje: Elsevier B.V 01.11.2024
    “…•Our model outperforms the traditional autoencoder architecture. A novel fully convolutional autoencoder (convAE…”
    Získať plný text
    Journal Article
  10. 10

    Deep representation learning of electronic health records to unlock patient stratification at scale Autor Landi, Isotta, Glicksberg, Benjamin S., Lee, Hao-Chih, Cherng, Sarah, Landi, Giulia, Danieletto, Matteo, Dudley, Joel T., Furlanello, Cesare, Miotto, Riccardo

    ISSN: 2398-6352, 2398-6352
    Vydavateľské údaje: London Nature Publishing Group UK 17.07.2020
    Vydané v NPJ digital medicine (17.07.2020)
    “… We introduce a representation learning model based on word embeddings, convolutional neural networks, and autoencoders (i.e., ConvAE…”
    Získať plný text
    Journal Article
  11. 11
  12. 12

    Deep Learning for Automatic Quality Grading of Mangoes: Methods and Insights Autor Wu, Shih-Lun, Tung, Hsiao-Yen, Hsu, Yu-Lun

    Vydavateľské údaje: IEEE 01.12.2020
    “…; and, a family of self-defined convolutional autoencoder-classifiers (ConvAE-Clfs) inspired by the claimed benefit of multi-task learning in classification tasks…”
    Získať plný text
    Konferenčný príspevok..
  13. 13

    Deep Crowd Anomaly Detection by Fusing Reconstruction and Prediction Networks Autor Sharif, Md. Haidar, Jiao, Lei, Omlin, Christian W.

    ISSN: 2079-9292, 2079-9292
    Vydavateľské údaje: Basel MDPI AG 01.04.2023
    Vydané v Electronics (Basel) (01.04.2023)
    “… Many existing deep anomaly detection models are based on reconstruction errors, where the training phase is performed using only videos of normal events and the model is then capable to estimate…”
    Získať plný text
    Journal Article
  14. 14

    Deep representation learning of electronic health records to unlock patient stratification at scale Autor Landi, Isotta, Glicksberg, Benjamin S., Lee, Hao-Chih, Cherng, Sarah, Landi, Giulia, Danieletto, Matteo, Dudley, Joel T., Furlanello, Cesare, Miotto, Riccardo

    ISSN: 2398-6352
    Vydavateľské údaje: London Nature Publishing Group UK 17.07.2020
    Vydané v NPJ digital medicine (17.07.2020)
    “… We introduce a representation learning model based on word embeddings, convolutional neural networks, and autoencoders (i.e., ConvAE…”
    Získať plný text
    Journal Article
  15. 15

    Rapid prediction of grain boundary network evolution in nanomaterials utilizing a generative machine learning approach Autor Wang, Yuheng, Kazemi, Amirreza, Jing, Taotao, Ding, Zhengming, Li, Like, Yang, Shengfeng

    ISSN: 2352-4316, 2352-4316
    Vydavateľské údaje: Elsevier Ltd 01.08.2024
    Vydané v Extreme Mechanics Letters (01.08.2024)
    “…) models have opened new avenues for the rapid exploration of design spaces. In this work, we developed a deep learning framework based on a conditional generative adversarial network (cGAN…”
    Získať plný text
    Journal Article
  16. 16

    Deep Representation Learning of Electronic Health Records to Unlock Patient Stratification at Scale Autor Landi, Isotta, Glicksberg, Benjamin S, Hao-Chih, Lee, Cherng, Sarah, Landi, Giulia, Danieletto, Matteo, Dudley, Joel T, Furlanello, Cesare, Miotto, Riccardo

    ISSN: 2331-8422
    Vydavateľské údaje: Ithaca Cornell University Library, arXiv.org 18.07.2020
    Vydané v arXiv.org (18.07.2020)
    “… We introduce a representation learning model based on word embeddings, convolutional neural networks, and autoencoders (i.e., ConvAE…”
    Získať plný text
    Paper
  17. 17

    Deep Learning for Automatic Quality Grading of Mangoes: Methods and Insights Autor Shih-Lun, Wu, Hsiao-Yen, Tung, Yu-Lun, Hsu

    ISSN: 2331-8422
    Vydavateľské údaje: Ithaca Cornell University Library, arXiv.org 23.11.2020
    Vydané v arXiv.org (23.11.2020)
    “…; and, a family of self-defined convolutional autoencoder-classifiers (ConvAE-Clfs) inspired by the claimed benefit of multi-task learning in classification tasks…”
    Získať plný text
    Paper