Výsledky vyhľadávania - We propose a multi-layer variational autoencoder method

  1. 1

    Hierarchical Residual Learning Based Vector Quantized Variational Autoencoder for Image Reconstruction and Generation Autor Adiban, Mohammad, Stefanov, Kalin, Sabato Marco Siniscalchi, Salvi, Giampiero

    ISSN: 2331-8422
    Vydavateľské údaje: Ithaca Cornell University Library, arXiv.org 09.08.2022
    Vydané v arXiv.org (09.08.2022)
    “…We propose a multi-layer variational autoencoder method, we call HR-VQVAE, that learns hierarchical discrete representations of the data…”
    Získať plný text
    Paper
  2. 2

    Drug repositioning based on heterogeneous networks and variational graph autoencoders Autor Lei, Song, Lei, Xiujuan, Liu, Lian

    ISSN: 1663-9812, 1663-9812
    Vydavateľské údaje: Switzerland Frontiers Media S.A 21.12.2022
    Vydané v Frontiers in pharmacology (21.12.2022)
    “… years has facilitated drug development. In this study we propose a drug repositioning method, VGAEDR, based on a heterogeneous network of multiple drug attributes and a variational graph autoencoder…”
    Získať plný text
    Journal Article
  3. 3

    Nonlinear system identification using modified variational autoencoders Autor Paniagua, Jose L., López, Jesús A.

    ISSN: 2667-3053, 2667-3053
    Vydavateľské údaje: Elsevier Ltd 01.06.2024
    Vydané v Intelligent systems with applications (01.06.2024)
    “… Our framework integrates Variational Autoencoders (VAE) with Nonlinear Autoregressive with exogenous input (NARX…”
    Získať plný text
    Journal Article
  4. 4
  5. 5

    Data augmentation with norm-AE and selective pseudo-labelling for unsupervised domain adaptation Autor Wang, Qian, Meng, Fanlin, Breckon, Toby P.

    ISSN: 0893-6080, 1879-2782, 1879-2782
    Vydavateľské údaje: United States Elsevier Ltd 01.04.2023
    Vydané v Neural networks (01.04.2023)
    “…, a shallow Multi-Layer Perceptron) trained in the original feature space. Besides, we propose a novel generative model norm…”
    Získať plný text
    Journal Article
  6. 6

    Deep Learning Approach for Epileptic Focus Localization Autor Daoud, Hisham, Bayoumi, Magdy

    ISSN: 1932-4545, 1940-9990, 1940-9990
    Vydavateľské údaje: United States IEEE 01.04.2020
    “… Our first proposed method is based on semi-supervised learning, in which a deep convolutional autoencoder is trained and then the pre-trained encoder is used with multi-layer perceptron as a classifier…”
    Získať plný text
    Journal Article
  7. 7

    The Wyner Variational Autoencoder for Unsupervised Multi-Layer Wireless Fingerprinting Autor Teng-Hui, Huang, Dahanayaka, Thilini, Thilakarathna, Kanchana, Leong, Philip H W, Hesham El Gamal

    ISSN: 2331-8422
    Vydavateľské údaje: Ithaca Cornell University Library, arXiv.org 29.08.2023
    Vydané v arXiv.org (29.08.2023)
    “…, packet length, without decryption of the payload. Inspired by these results, we propose a multi-layer fingerprinting framework that jointly considers the multi-layer signatures for improved identification performance…”
    Získať plný text
    Paper
  8. 8

    Enhancing microbe-disease association prediction via multi-view graph convolution and latent feature learning Autor Wang, Bo, Wu, Peilong, Du, Xiaoxin, Zhang, Chunyu, Fu, Shanshan, Sun, Tang, Yang, Xue

    ISSN: 1476-9271, 1476-928X, 1476-928X
    Vydavateľské údaje: England Elsevier Ltd 01.12.2025
    Vydané v Computational biology and chemistry (01.12.2025)
    “…), variational autoencoders (VAEs), and dynamic kernel matrix weighting for microbe-disease association (MDA) prediction…”
    Získať plný text
    Journal Article
  9. 9

    Deep Learning for Identifying Promising Drug Candidates in Drug–Phospholipid Complexes Autor Yoo, Soyoung, Lee, Hanbyul, Kim, Junghyun

    ISSN: 1420-3049, 1420-3049
    Vydavateľské údaje: Switzerland MDPI AG 16.06.2023
    Vydané v Molecules (Basel, Switzerland) (16.06.2023)
    “…Drug–phospholipid complexing is a promising formulation technology for improving the low bioavailability of active pharmaceutical ingredients (APIs). However,…”
    Získať plný text
    Journal Article
  10. 10

    SVAE‐GRU‐based degradation generation and prediction for small samples Autor Shangguan, Anqi, Feng, Nan, Mu, Lingxia, Fei, Rong, Hei, Xinhong, Xie, Guo

    ISSN: 0748-8017, 1099-1638
    Vydavateľské údaje: Bognor Regis Wiley Subscription Services, Inc 01.11.2023
    “… New degradation data are generated by combining the Stacked Variational Autoencoder (SVAE…”
    Získať plný text
    Journal Article
  11. 11

    Remaining Useful Life Prediction Method Based on Conv-Transformer Variational Autoencoder Autor Wang, Junjie, Hu, Xiaofeng, Yang, Yuwang

    Vydavateľské údaje: IEEE 14.06.2024
    “… To address these, this paper proposes a new RUL prediction method based on Conv-Transformer Variational Autoencoder…”
    Získať plný text
    Konferenčný príspevok..
  12. 12

    Soft Sensor Development Based on Deep Extended Variational Autoencoder with Just-in-time Learning Autor Shengjie, Xiong, Li, Xie, Liang, Xu

    ISSN: 2767-9861
    Vydavateľské údaje: IEEE 09.05.2025
    “… To address this issue, this paper proposes a soft sensor development method based on a deep extended variational autoencoder with just-in-Time Learning (JITL-DE-VAE…”
    Získať plný text
    Konferenčný príspevok..
  13. 13

    Quantum deep learning-enhanced ethereum blockchain for cloud security: intrusion detection, fraud prevention, and secure data migration Autor Nagarjun, A. Venkata, Rajkumar, Sujatha

    ISSN: 2045-2322, 2045-2322
    Vydavateľské údaje: London Nature Publishing Group UK 05.11.2025
    Vydané v Scientific reports (05.11.2025)
    “… Conventional blockchain security methods suffer from poor scalability and dynamic threat analysis…”
    Získať plný text
    Journal Article
  14. 14

    Securing Multi-Layer Federated Learning: Detecting and Mitigating Adversarial Attacks Autor Gouge, Justin, Wang, Ping

    Vydavateľské údaje: IEEE 07.08.2024
    “… In this work, we propose new methods for anomaly detection and removal of attackers from training in a multi-layer FL system…”
    Získať plný text
    Konferenčný príspevok..
  15. 15

    Simple and Effective Graph Autoencoders with One-Hop Linear Models Autor Salha, Guillaume, Hennequin, Romain, Vazirgiannis, Michalis

    ISSN: 2331-8422
    Vydavateľské údaje: Ithaca Cornell University Library, arXiv.org 17.06.2020
    Vydané v arXiv.org (17.06.2020)
    “…Over the last few years, graph autoencoders (AE) and variational autoencoders (VAE) emerged as powerful node embedding methods, with promising performances on challenging tasks such as link prediction and node clustering…”
    Získať plný text
    Paper
  16. 16

    Diverse Preference Augmentation with Multiple Domains for Cold-start Recommendations Autor Zhang, Yan, Li, Changyu, Tsang, Ivor W., Xu, Hui, Duan, Lixin, Yin, Hongzhi, Li, Wen, Shao, Jie

    ISSN: 2375-026X
    Vydavateľské údaje: IEEE 01.05.2022
    Vydané v Data engineering (01.05.2022)
    “…Cold-start issues have been more and more challenging for providing accurate recommendations with the fast increase of users and items. Most existing…”
    Získať plný text
    Konferenčný príspevok..
  17. 17

    A Zero-Shot Learning-Based Detection Model Against Zero-Day Attacks in IoT Autor Gao, Xueqin, Chen, Kai, Zhao, Yufei, Zhang, Peng, Han, Longxi, Zhang, Daojuan

    Vydavateľské údaje: IEEE 17.05.2024
    “… Aiming at the problem of lack of available samples for zero-day attack detection in loT, we propose a zero-day attack detection method based on generative zero-shot learning…”
    Získať plný text
    Konferenčný príspevok..
  18. 18

    Chaotic variational auto encoder-based adversarial machine learning Autor Pavan Venkata Sainadh Reddy, Daka, Vivek, Yelleti, Pranay, Gopi, Ravi, Vadlamani

    ISSN: 0045-7906
    Vydavateľské údaje: Elsevier Ltd 01.12.2025
    Vydané v Computers & electrical engineering (01.12.2025)
    “… This motivated us to propose a novel, computationally less expensive method for generating adversarial samples by employing a Variational Autoencoder (VAE…”
    Získať plný text
    Journal Article
  19. 19

    Variational Structure Learning for Semi-Supervised Classification Autor Marthoglou, Konstantinos, Vretos, Nicholas, Daras, Petros

    ISSN: 2161-0371
    Vydavateľské údaje: IEEE 22.09.2024
    “… Graph structure learning or GSL can help in alleviating this problem, although many algorithms have shallow message propagation schemes, ignoring the deep expressibility that is possible with multi-layer networks…”
    Získať plný text
    Konferenčný príspevok..
  20. 20

    HetFCM: functional co-module discovery by heterogeneous network co-clustering Autor Tan, Haojiang, Guo, Maozu, Chen, Jian, Wang, Jun, Yu, Guoxian

    ISSN: 0305-1048, 1362-4962, 1362-4962
    Vydavateľské údaje: England Oxford University Press 09.02.2024
    Vydané v Nucleic acids research (09.02.2024)
    “…) to detect functional co-modules. HetFCM introduces an attributed heterogeneous network to jointly model interplays and multi-type attributes of different molecules, and applies multiple variational graph autoencoders on the network…”
    Získať plný text
    Journal Article