Výsledky vyhľadávania - Theory of computation → Parallel algorithms

Upresniť hľadanie
  1. 1

    MoMaS: Mold Manifold Simulation for real‐time procedural texturing Autor Maggioli, F., Marin, R., Melzi, S., Rodolà, E.

    ISSN: 0167-7055, 1467-8659
    Vydavateľské údaje: Oxford Blackwell Publishing Ltd 01.10.2022
    Vydané v Computer graphics forum (01.10.2022)
    “…The slime mold algorithm has recently been under the spotlight thanks to its compelling properties studied across many disciplines like biology, computation theory, and artificial intelligence…”
    Získať plný text
    Journal Article
  2. 2

    InnerSP: A Memory Efficient Sparse Matrix Multiplication Accelerator with Locality-Aware Inner Product Processing Autor Baek, Daehyeon, Hwang, Soojin, Heo, Taekyung, Kim, Daehoon, Huh, Jaehyuk

    Vydavateľské údaje: IEEE 01.09.2021
    “… Such an unpredictable increase in memory requirement during computation can limit the applicability of accelerators…”
    Získať plný text
    Konferenčný príspevok..
  3. 3

    pSyncPIM: Partially Synchronous Execution of Sparse Matrix Operations for All-Bank PIM Architectures Autor Baek, Daehyeon, Hwang, Soojin, Huh, Jaehyuk

    Vydavateľské údaje: IEEE 29.06.2024
    “… Sparse matrix processing is another critical computation that can significantly benefit from the PIM architecture, but the current all-bank PIM control cannot support diverging executions due to the random sparsity…”
    Získať plný text
    Konferenčný príspevok..
  4. 4

    Skywalker: Efficient Alias-Method-Based Graph Sampling and Random Walk on GPUs Autor Wang, Pengyu, Li, Chao, Wang, Jing, Wang, Taolei, Zhang, Lu, Leng, Jingwen, Chen, Quan, Guo, Minyi

    Vydavateľské údaje: IEEE 01.09.2021
    “…Graph sampling and random walk operations, capturing the structural properties of graphs, are playing an important role today as we cannot directly adopt computing-intensive algorithms on large-scale graphs…”
    Získať plný text
    Konferenčný príspevok..
  5. 5

    Seer: Predictive Runtime Kernel Selection for Irregular Problems Autor Swann, Ryan, Osama, Muhammad, Sangaiah, Karthik, Mahmud, Jalal

    ISSN: 2643-2838
    Vydavateľské údaje: IEEE 02.03.2024
    “…Modern GPUs are designed for regular problems and suffer from load imbalance when processing irregular data. Prior to our work, a domain expert selects the…”
    Získať plný text
    Konferenčný príspevok..
  6. 6

    Max-PIM: Fast and Efficient Max/Min Searching in DRAM Autor Zhang, Fan, Angizi, Shaahin, Fan, Deliang

    Vydavateľské údaje: IEEE 05.12.2021
    “… In this work, for the first time, we propose a novel 'Min/Max-in-memory' algorithm based on iterative XNOR bit-wise comparison, which supports parallel inmemory searching for minimum and maximum…”
    Získať plný text
    Konferenčný príspevok..
  7. 7

    BlasPart: A Deterministic Parallel Partitioner for Balanced Large-Scale Hypergraph Partitioning Autor Tong, Shengbo, Pei, Chunyan, Yu, Wenjian

    Vydavateľské údaje: IEEE 22.06.2025
    “… In this paper, we propose BlasPart, a deterministic parallel algorithm for balanced large-scale hypergraph partitioning…”
    Získať plný text
    Konferenčný príspevok..
  8. 8

    Scope States (Artifact) Autor van Antwerpen, Hendrik, Visser, Eelco

    ISSN: 2509-8195
    Vydavateľské údaje: Schloss Dagstuhl – Leibniz-Zentrum für Informatik 06.07.2021
    “…Compilers that can type check compilation units in parallel can make more efficient use of multi-core architectures, which are nowadays widespread…”
    Získať plný text
    Data Set
  9. 9

    ParGNN: A Scalable Graph Neural Network Training Framework on multi-GPUs Autor Gu, Junyu, Li, Shunde, Cao, Rongqiang, Wang, Jue, Wang, Zijian, Liang, Zhiqiang, Liu, Fang, Li, Shigang, Zhou, Chunbao, Wang, Yangang, Chi, Xuebin

    Vydavateľské údaje: IEEE 22.06.2025
    “… over-partition to alleviate load imbalance. Based on the over-partition results, we present a subgraph pipeline algorithm to overlap communication and computation while maintaining the accuracy of GNN training…”
    Získať plný text
    Konferenčný príspevok..
  10. 10

    Parallelizing Maximal Clique Enumeration on GPUs Autor Almasri, Mohammad, Chang, Yen-Hsiang, Hajj, Izzat El, Nagi, Rakesh, Xiong, Jinjun, Hwu, Wen-mei

    Vydavateľské údaje: IEEE 21.10.2023
    “…We present a GPU solution for exact maximal clique enumeration (MCE) that performs a search tree traversal following the Bron-Kerbosch algorithm…”
    Získať plný text
    Konferenčný príspevok..
  11. 11

    HybriMoE: Hybrid CPU-GPU Scheduling and Cache Management for Efficient MoE Inference Autor Zhong, Shuzhang, Sun, Yanfan, Liang, Ling, Wang, Runsheng, Huang, Ru, Li, Meng

    Vydavateľské údaje: IEEE 22.06.2025
    “…The Mixture of Experts (MoE) architecture has demonstrated significant advantages as it enables to increase the model capacity without a proportional increase in computation…”
    Získať plný text
    Konferenčný príspevok..
  12. 12

    Gluon-Async: A Bulk-Asynchronous System for Distributed and Heterogeneous Graph Analytics Autor Dathathri, Roshan, Gill, Gurbinder, Hoang, Loc, Jatala, Vishwesh, Pingali, Keshav, Nandivada, V. Krishna, Dang, Hoang-Vu, Snir, Marc

    ISSN: 2641-7936
    Vydavateľské údaje: IEEE 01.09.2019
    “…Distributed graph analytics systems for CPUs, like D-Galois and Gemini, and for GPUs, like D-IrGL and Lux, use a bulk-synchronous parallel (BSP…”
    Získať plný text
    Konferenčný príspevok..
  13. 13

    DS-GL: Advancing Graph Learning via Harnessing Nature's Power within Scalable Dynamical Systems Autor Song, Ruibing, Wu, Chunshu, Liu, Chuan, Li, Ang, Huang, Michael, Geng, Tony Tong

    Vydavateľské údaje: IEEE 29.06.2024
    “… problems and have been adopted for traditional graph computation, such as max-cut. However, when performing complex Graph Learning (GL…”
    Získať plný text
    Konferenčný príspevok..
  14. 14

    NDFT: Accelerating Density Functional Theory Calculations via Hardware/Software Co-Design on Near-Data Computing System Autor Jiang, Qingcai, Tu, Buxin, Hao, Xiaoyu, Chen, Junshi, An, Hong

    Vydavateľské údaje: IEEE 22.06.2025
    “…Linear-response time-dependent Density Functional Theory (LR-TDDFT) is a widely used method for accurately predicting the excited-state properties of physical systems…”
    Získať plný text
    Konferenčný príspevok..
  15. 15

    MAD-Max Beyond Single-Node: Enabling Large Machine Learning Model Acceleration on Distributed Systems Autor Hsia, Samuel, Golden, Alicia, Acun, Bilge, Ardalani, Newsha, DeVito, Zachary, Wei, Gu-Yeon, Brooks, David, Wu, Carole-Jean

    Vydavateľské údaje: IEEE 29.06.2024
    “…% of all GPU hours are spent on communication with no overlapping computation. To minimize this outstanding communication latency and other inherent at-scale inefficiencies, we introduce an agile performance modeling framework, MAD-Max…”
    Získať plný text
    Konferenčný príspevok..
  16. 16

    Asynchronous Distributed-Memory Parallel Algorithms for Influence Maximization Autor Singhal, Shubhendra Pal, Hati, Souvadra, Young, Jeffrey, Sarkar, Vivek, Hayashi, Akihiro, Vuduc, Richard

    Vydavateľské údaje: IEEE 17.11.2024
    “… We propose distributed-memory parallel algorithms for the two main kernels of a state-of-the-art implementation of one IM algorithm, influence maximization via martingales (IMM…”
    Získať plný text
    Konferenčný príspevok..
  17. 17

    SFLU: Synchronization-Free Sparse LU Factorization for Fast Circuit Simulation on GPUs Autor Zhao, Jianqi, Wen, Yao, Luo, Yuchen, Jin, Zhou, Liu, Weifeng, Zhou, Zhenya

    Vydavateľské údaje: IEEE 05.12.2021
    “… GPUs.We in this paper propose a synchronization-free sparse LU factorization algorithm called SFLU…”
    Získať plný text
    Konferenčný príspevok..
  18. 18

    DenSparSA: A Balanced Systolic Array Approach for Dense and Sparse Matrix Multiplication Autor Wang, Ziheng, Sun, Ruiqi, He, Xin, Ma, Tianrui, Zou, An

    Vydavateľské údaje: IEEE 22.06.2025
    “… requirements.In this paper, we introduce DenSparSA, a balanced systolic array centralized architecture that can execute sparse matrix computations with minimal overhead to original dense matrix computations…”
    Získať plný text
    Konferenčný príspevok..
  19. 19

    Leveraging Difference Recurrence Relations for High-Performance GPU Genome Alignment Autor Zeni, Alberto, Onken, Seth, Santambrogio, Marco Domenico, Samadi, Mehrzad

    Vydavateľské údaje: ACM 13.10.2024
    “… while decreasing the associated cost, emphasizing the need for fast and accurate software to perform sequence analysis, given the quadratic complexity of exact pairwise algorithms…”
    Získať plný text
    Konferenčný príspevok..
  20. 20

    StocHD: Stochastic Hyperdimensional System for Efficient and Robust Learning from Raw Data Autor Poduval, Prathyush, Zou, Zhuowen, Najafi, Hassan, Homayoun, Houman, Imani, Mohsen

    Vydavateľské údaje: IEEE 05.12.2021
    “…Hyperdimensional Computing (HDC) is a neurally-inspired computation model working based on the observation that the human brain operates on high-dimensional representations of data, called hypervector…”
    Získať plný text
    Konferenčný príspevok..