Výsledky vyhľadávania - Theory of computation → Massively parallel algorithms

  1. 1

    Hierarchical Rasterization of Curved Primitives for Vector Graphics Rendering on the GPU Autor Dokter, Mark, Hladky, Jozef, Parger, Mathias, Schmalstieg, Dieter, Seidel, Hans‐Peter, Steinberger, Markus

    ISSN: 0167-7055, 1467-8659
    Vydavateľské údaje: Oxford Blackwell Publishing Ltd 01.05.2019
    Vydané v Computer graphics forum (01.05.2019)
    “… Our rasterizer is fast and scalable, works on all patches in parallel, and does not require any approximations…”
    Získať plný text
    Journal Article
  2. 2

    Skywalker: Efficient Alias-Method-Based Graph Sampling and Random Walk on GPUs Autor Wang, Pengyu, Li, Chao, Wang, Jing, Wang, Taolei, Zhang, Lu, Leng, Jingwen, Chen, Quan, Guo, Minyi

    Vydavateľské údaje: IEEE 01.09.2021
    “…Graph sampling and random walk operations, capturing the structural properties of graphs, are playing an important role today as we cannot directly adopt computing-intensive algorithms on large-scale graphs…”
    Získať plný text
    Konferenčný príspevok..
  3. 3

    Parallel Globally Consistent Normal Orientation of Raw Unorganized Point Clouds Autor Jakob, J., Buchenau, C., Guthe, M.

    ISSN: 0167-7055, 1467-8659
    Vydavateľské údaje: Oxford Blackwell Publishing Ltd 01.08.2019
    Vydané v Computer graphics forum (01.08.2019)
    “… on unrealistic assumptions, or have extremely long computation times, making them unusable on real‐world data. We present a novel massively parallelized method to compute globally consistent oriented point normals for raw and unsorted point clouds…”
    Získať plný text
    Journal Article
  4. 4

    BlasPart: A Deterministic Parallel Partitioner for Balanced Large-Scale Hypergraph Partitioning Autor Tong, Shengbo, Pei, Chunyan, Yu, Wenjian

    Vydavateľské údaje: IEEE 22.06.2025
    “… In this paper, we propose BlasPart, a deterministic parallel algorithm for balanced large-scale hypergraph partitioning…”
    Získať plný text
    Konferenčný príspevok..
  5. 5

    Scaling betweenness centrality using communication-efficient sparse matrix multiplication Autor Solomonik, Edgar, Besta, Maciej, Vella, Flavio, Hoefler, Torsten

    ISBN: 9781450351140, 145035114X
    ISSN: 2167-4337
    Vydavateľské údaje: New York, NY, USA ACM 12.11.2017
    “… through it. We propose Maximal Frontier Betweenness Centrality (MFBC): a succinct BC algorithm based on novel sparse matrix multiplication routines that performs a factor…”
    Získať plný text
    Konferenčný príspevok..
  6. 6

    Parallelizing Maximal Clique Enumeration on GPUs Autor Almasri, Mohammad, Chang, Yen-Hsiang, Hajj, Izzat El, Nagi, Rakesh, Xiong, Jinjun, Hwu, Wen-mei

    Vydavateľské údaje: IEEE 21.10.2023
    “…We present a GPU solution for exact maximal clique enumeration (MCE) that performs a search tree traversal following the Bron-Kerbosch algorithm…”
    Získať plný text
    Konferenčný príspevok..
  7. 7

    HybriMoE: Hybrid CPU-GPU Scheduling and Cache Management for Efficient MoE Inference Autor Zhong, Shuzhang, Sun, Yanfan, Liang, Ling, Wang, Runsheng, Huang, Ru, Li, Meng

    Vydavateľské údaje: IEEE 22.06.2025
    “…The Mixture of Experts (MoE) architecture has demonstrated significant advantages as it enables to increase the model capacity without a proportional increase in computation…”
    Získať plný text
    Konferenčný príspevok..
  8. 8

    ParGNN: A Scalable Graph Neural Network Training Framework on multi-GPUs Autor Gu, Junyu, Li, Shunde, Cao, Rongqiang, Wang, Jue, Wang, Zijian, Liang, Zhiqiang, Liu, Fang, Li, Shigang, Zhou, Chunbao, Wang, Yangang, Chi, Xuebin

    Vydavateľské údaje: IEEE 22.06.2025
    “… over-partition to alleviate load imbalance. Based on the over-partition results, we present a subgraph pipeline algorithm to overlap communication and computation while maintaining the accuracy of GNN training…”
    Získať plný text
    Konferenčný príspevok..
  9. 9

    pSyncPIM: Partially Synchronous Execution of Sparse Matrix Operations for All-Bank PIM Architectures Autor Baek, Daehyeon, Hwang, Soojin, Huh, Jaehyuk

    Vydavateľské údaje: IEEE 29.06.2024
    “… Sparse matrix processing is another critical computation that can significantly benefit from the PIM architecture, but the current all-bank PIM control cannot support diverging executions due to the random sparsity…”
    Získať plný text
    Konferenčný príspevok..
  10. 10

    Gluon-Async: A Bulk-Asynchronous System for Distributed and Heterogeneous Graph Analytics Autor Dathathri, Roshan, Gill, Gurbinder, Hoang, Loc, Jatala, Vishwesh, Pingali, Keshav, Nandivada, V. Krishna, Dang, Hoang-Vu, Snir, Marc

    ISSN: 2641-7936
    Vydavateľské údaje: IEEE 01.09.2019
    “…Distributed graph analytics systems for CPUs, like D-Galois and Gemini, and for GPUs, like D-IrGL and Lux, use a bulk-synchronous parallel (BSP…”
    Získať plný text
    Konferenčný príspevok..
  11. 11

    MAD-Max Beyond Single-Node: Enabling Large Machine Learning Model Acceleration on Distributed Systems Autor Hsia, Samuel, Golden, Alicia, Acun, Bilge, Ardalani, Newsha, DeVito, Zachary, Wei, Gu-Yeon, Brooks, David, Wu, Carole-Jean

    Vydavateľské údaje: IEEE 29.06.2024
    “…% of all GPU hours are spent on communication with no overlapping computation. To minimize this outstanding communication latency and other inherent at-scale inefficiencies, we introduce an agile performance modeling framework, MAD-Max…”
    Získať plný text
    Konferenčný príspevok..
  12. 12

    InnerSP: A Memory Efficient Sparse Matrix Multiplication Accelerator with Locality-Aware Inner Product Processing Autor Baek, Daehyeon, Hwang, Soojin, Heo, Taekyung, Kim, Daehoon, Huh, Jaehyuk

    Vydavateľské údaje: IEEE 01.09.2021
    “… Such an unpredictable increase in memory requirement during computation can limit the applicability of accelerators…”
    Získať plný text
    Konferenčný príspevok..
  13. 13

    NDFT: Accelerating Density Functional Theory Calculations via Hardware/Software Co-Design on Near-Data Computing System Autor Jiang, Qingcai, Tu, Buxin, Hao, Xiaoyu, Chen, Junshi, An, Hong

    Vydavateľské údaje: IEEE 22.06.2025
    “…Linear-response time-dependent Density Functional Theory (LR-TDDFT) is a widely used method for accurately predicting the excited-state properties of physical systems…”
    Získať plný text
    Konferenčný príspevok..
  14. 14

    Seer: Predictive Runtime Kernel Selection for Irregular Problems Autor Swann, Ryan, Osama, Muhammad, Sangaiah, Karthik, Mahmud, Jalal

    ISSN: 2643-2838
    Vydavateľské údaje: IEEE 02.03.2024
    “…Modern GPUs are designed for regular problems and suffer from load imbalance when processing irregular data. Prior to our work, a domain expert selects the…”
    Získať plný text
    Konferenčný príspevok..
  15. 15

    SFLU: Synchronization-Free Sparse LU Factorization for Fast Circuit Simulation on GPUs Autor Zhao, Jianqi, Wen, Yao, Luo, Yuchen, Jin, Zhou, Liu, Weifeng, Zhou, Zhenya

    Vydavateľské údaje: IEEE 05.12.2021
    “… GPUs.We in this paper propose a synchronization-free sparse LU factorization algorithm called SFLU…”
    Získať plný text
    Konferenčný príspevok..
  16. 16

    DS-GL: Advancing Graph Learning via Harnessing Nature's Power within Scalable Dynamical Systems Autor Song, Ruibing, Wu, Chunshu, Liu, Chuan, Li, Ang, Huang, Michael, Geng, Tony Tong

    Vydavateľské údaje: IEEE 29.06.2024
    “… problems and have been adopted for traditional graph computation, such as max-cut. However, when performing complex Graph Learning (GL…”
    Získať plný text
    Konferenčný príspevok..
  17. 17

    Leveraging Difference Recurrence Relations for High-Performance GPU Genome Alignment Autor Zeni, Alberto, Onken, Seth, Santambrogio, Marco Domenico, Samadi, Mehrzad

    Vydavateľské údaje: ACM 13.10.2024
    “… while decreasing the associated cost, emphasizing the need for fast and accurate software to perform sequence analysis, given the quadratic complexity of exact pairwise algorithms…”
    Získať plný text
    Konferenčný príspevok..
  18. 18

    StocHD: Stochastic Hyperdimensional System for Efficient and Robust Learning from Raw Data Autor Poduval, Prathyush, Zou, Zhuowen, Najafi, Hassan, Homayoun, Houman, Imani, Mohsen

    Vydavateľské údaje: IEEE 05.12.2021
    “…Hyperdimensional Computing (HDC) is a neurally-inspired computation model working based on the observation that the human brain operates on high-dimensional representations of data, called hypervector…”
    Získať plný text
    Konferenčný príspevok..
  19. 19

    Max-PIM: Fast and Efficient Max/Min Searching in DRAM Autor Zhang, Fan, Angizi, Shaahin, Fan, Deliang

    Vydavateľské údaje: IEEE 05.12.2021
    “… In this work, for the first time, we propose a novel 'Min/Max-in-memory' algorithm based on iterative XNOR bit-wise comparison, which supports parallel inmemory searching for minimum and maximum…”
    Získať plný text
    Konferenčný príspevok..
  20. 20

    A Scalable and Robust Compilation Framework for Emitter-Photonic Graph State Autor Ren, Xiangyu, Huang, Yuexun, Liang, Zhiding, Barbalace, Antonio

    Vydavateľské údaje: IEEE 22.06.2025
    “…Quantum graph states are critical resources for various quantum algorithms, and also determine essential interconnections in distributed quantum computing…”
    Získať plný text
    Konferenčný príspevok..