Výsledky vyhľadávania - Theory of computation → Dynamic graph algorithms

Upresniť hľadanie
  1. 1

    Skywalker: Efficient Alias-Method-Based Graph Sampling and Random Walk on GPUs Autor Wang, Pengyu, Li, Chao, Wang, Jing, Wang, Taolei, Zhang, Lu, Leng, Jingwen, Chen, Quan, Guo, Minyi

    Vydavateľské údaje: IEEE 01.09.2021
    “…Graph sampling and random walk operations, capturing the structural properties of graphs, are playing an important role today as we cannot directly adopt computing-intensive algorithms on large-scale graphs…”
    Získať plný text
    Konferenčný príspevok..
  2. 2

    ParGNN: A Scalable Graph Neural Network Training Framework on multi-GPUs Autor Gu, Junyu, Li, Shunde, Cao, Rongqiang, Wang, Jue, Wang, Zijian, Liang, Zhiqiang, Liu, Fang, Li, Shigang, Zhou, Chunbao, Wang, Yangang, Chi, Xuebin

    Vydavateľské údaje: IEEE 22.06.2025
    “… over-partition to alleviate load imbalance. Based on the over-partition results, we present a subgraph pipeline algorithm to overlap communication and computation while maintaining the accuracy of GNN training…”
    Získať plný text
    Konferenčný príspevok..
  3. 3

    BlasPart: A Deterministic Parallel Partitioner for Balanced Large-Scale Hypergraph Partitioning Autor Tong, Shengbo, Pei, Chunyan, Yu, Wenjian

    Vydavateľské údaje: IEEE 22.06.2025
    “… Thus, fast and high-quality deterministic partitioning algorithms are largely in demand…”
    Získať plný text
    Konferenčný príspevok..
  4. 4

    ACGraph: Accelerating Streaming Graph Processing via Dependence Hierarchy Autor Jiang, Zihan, Mao, Fubing, Guo, Yapu, Liu, Xu, Liu, Haikun, Liao, Xiaofei, Jin, Hai, Zhang, Wei

    Vydavateľské údaje: IEEE 09.07.2023
    “…Streaming graph processing needs to timely evaluate continuous queries. Prior systems suffer from massive redundant computations due to the irregular order of processing vertices influenced by updates…”
    Získať plný text
    Konferenčný príspevok..
  5. 5

    DS-GL: Advancing Graph Learning via Harnessing Nature's Power within Scalable Dynamical Systems Autor Song, Ruibing, Wu, Chunshu, Liu, Chuan, Li, Ang, Huang, Michael, Geng, Tony Tong

    Vydavateľské údaje: IEEE 29.06.2024
    “… problems and have been adopted for traditional graph computation, such as max-cut. However, when performing complex Graph Learning (GL…”
    Získať plný text
    Konferenčný príspevok..
  6. 6

    DyGNN: Algorithm and Architecture Support of Dynamic Pruning for Graph Neural Networks Autor Chen, Cen, Li, Kenli, Zou, Xiaofeng, Li, Yangfan

    Vydavateľské údaje: IEEE 05.12.2021
    “…Recently, graph neural networks (GNNs) have achieved great success for graph representation learning tasks…”
    Získať plný text
    Konferenčný príspevok..
  7. 7

    LearnGraph: A Learning-Based Architecture for Dynamic Graph Processing Autor Zhang, Lingling, Wu, Yijian, Jiang, Hong, Zhou, Ziyu, Lu, Tiancheng

    Vydavateľské údaje: IEEE 22.06.2025
    “…Dynamic graph processing systems using conventional array-based architectures face significant throughput limitations due to inefficient memory access and index management…”
    Získať plný text
    Konferenčný príspevok..
  8. 8

    SumPA: Efficient Pattern-Centric Graph Mining with Pattern Abstraction Autor Gui, Chuangyi, Liao, Xiaofei, Zheng, Long, Yao, Pengcheng, Wang, Qinggang, Jin, Hai

    Vydavateľské údaje: IEEE 01.09.2021
    “…Graph mining aims to explore interesting structural information of a graph. Pattern-centric systems typically transform a generic-purpose graph mining problem into a series of subgraph matching problems for high performance…”
    Získať plný text
    Konferenčný príspevok..
  9. 9

    Parallelizing Maximal Clique Enumeration on GPUs Autor Almasri, Mohammad, Chang, Yen-Hsiang, Hajj, Izzat El, Nagi, Rakesh, Xiong, Jinjun, Hwu, Wen-mei

    Vydavateľské údaje: IEEE 21.10.2023
    “…We present a GPU solution for exact maximal clique enumeration (MCE) that performs a search tree traversal following the Bron-Kerbosch algorithm…”
    Získať plný text
    Konferenčný príspevok..
  10. 10

    PIMGCN: A ReRAM-Based PIM Design for Graph Convolutional Network Acceleration Autor Yang, Tao, Li, Dongyue, Han, Yibo, Zhao, Yilong, Liu, Fangxin, Liang, Xiaoyao, He, Zhezhi, Jiang, Li

    Vydavateľské údaje: IEEE 05.12.2021
    “…Graph Convolutional Network (GCN) is a promising but computing- and memory-intensive learning model…”
    Získať plný text
    Konferenčný príspevok..
  11. 11

    iG-kway: Incremental k-way Graph Partitioning on GPU Autor Lee, Wan Luan, Jiang, Shui, Lin, Dian-Lun, Chang, Che, Zhang, Boyang, Chung, Yi-Hua, Schlichtmann, Ulf, Ho, Tsung-Yi, Huang, Tsung-Wei

    Vydavateľské údaje: IEEE 22.06.2025
    “…Recent advances in GPU-accelerated graph partitioning have achieved significant performance gains but remain limited to full graph partitioning, lacking support for incremental updates…”
    Získať plný text
    Konferenčný príspevok..
  12. 12

    GPart: A GNN-Enabled Multilevel Graph Partitioner Autor Chen, Magi, Wang, Ting-Chi

    Vydavateľské údaje: IEEE 22.06.2025
    “…This paper introduces GPart, a scalable multilevel framework for graph partitioning that integrates GNN embeddings with efficient coarsening and refinement techniques…”
    Získať plný text
    Konferenčný príspevok..
  13. 13

    EMGraph: Fast Learning-Based Electromigration Analysis for Multi-Segment Interconnect Using Graph Convolution Networks Autor Jin, Wentian, Chen, Liang, Sadiqbatcha, Sheriff, Peng, Shaoyi, Tan, Sheldon X.-D.

    Vydavateľské údaje: IEEE 05.12.2021
    “… VLSI multisegment interconnect trees can be naturally viewed as graphs. Based on this observation, we propose a new graph convolution network (GCN…”
    Získať plný text
    Konferenčný príspevok..
  14. 14

    Dynamic Allocation of Processor Cores to Graph Applications on Commodity Servers Autor Pons, Lucia, Sahuauillo, Julio, Jones, Timothy M.

    Vydavateľské údaje: IEEE 21.10.2023
    “…Graph processing is increasingly adopted to solve problems that span many application domains, including scientific computing, social networks, and big-data analytics…”
    Získať plný text
    Konferenčný príspevok..
  15. 15

    Anchor First, Accelerate Next: Revolutionizing GNNs with PIM by Harnessing Stationary Data Autor Chen, Jiaxian, Qi, Yuxuan, Zhu, Yongbiao, Yuan, Jianan, Sun, Kaoyi, Wang, Tianyu, Ma, Chenlin, Wang, Yi

    Vydavateľské údaje: IEEE 22.06.2025
    “…Substantial data movement caused by irregular graph topologies hinders the efficient processing of graph neural networks (GNNs…”
    Získať plný text
    Konferenčný príspevok..
  16. 16

    SGIRR: Sparse Graph Index Remapping for ReRAM Crossbar Operation Unit and Power Optimization Autor Wang, Cheng-Yuan, Chang, Yao-Wen, Chang, Yuan-Hao

    ISSN: 1558-2434
    Vydavateľské údaje: ACM 29.10.2022
    “…Resistive Random Access Memory (ReRAM) Crossbars are a promising process-in-memory technology to reduce enormous data movement overheads of large-scale graph processing between computation and memory units…”
    Získať plný text
    Konferenčný príspevok..
  17. 17

    PSMiner: A Pattern-Aware Accelerator for High-Performance Streaming Graph Pattern Mining Autor Qi, Hao, Zhang, Yu, He, Ligang, Luo, Kang, Huang, Jun, Lu, Haoyu, Zhao, Jin, Jin, Hai

    Vydavateľské údaje: IEEE 09.07.2023
    “…Streaming Graph Pattern Mining (GPM) has been widely used in many application fields…”
    Získať plný text
    Konferenčný príspevok..
  18. 18

    A Synchronization-Avoiding Distance-1 Grundy Coloring Algorithm for Power-Law Graphs Autor Firoz, Jesun Sahariar, Zalewski, Marcin, Lumsdaine, Andrew

    ISSN: 2641-7936
    Vydavateľské údaje: IEEE 01.09.2019
    “… We implement our DC coloring algorithm and the well-known Jones-Plassmann algorithm and compare their performance with 4 different types of standard RMAT graphs and real-world graphs…”
    Získať plný text
    Konferenčný príspevok..
  19. 19

    SAGA: A Memory-Efficient Accelerator for GANN Construction via Harnessing Vertex Similarity Autor Chen, Ruiyang, Liu, Xueyuan, Qi, Chunyu, Yao, Yuanzheng, Sun, Yanan, Liang, Xiaoyao, Song, Zhuoran

    Vydavateľské údaje: IEEE 22.06.2025
    “… Although architectures like NDSearch have been proposed to accelerate GANN search, they are hard to deploy for GANN construction, as their pre-processing methods introduce massive overhead in dynamic graphs…”
    Získať plný text
    Konferenčný príspevok..
  20. 20

    PairGraph: An Efficient Search-space-aware Accelerator for High-performance Concurrent Pairwise Queries Autor Fu, Yutao, Long, Zhongtian, Zhang, Yu, He, Zirui, Zhao, Jin, Niu, Qiyuan, Wang, Zixiao, Jin, Hai

    Vydavateľské údaje: IEEE 22.06.2025
    “…) because of the poor temporal and spatial locality of traversal overlaps (i.e., graph structure data traversed by several queries…”
    Získať plný text
    Konferenčný príspevok..