Výsledky vyhľadávania - Temporal Graph Convolutional Autoencoder
-
1
Human-related anomalous event detection via spatial-temporal graph convolutional autoencoder with embedded long short-term memory network
ISSN: 0925-2312, 1872-8286Vydavateľské údaje: Elsevier B.V 14.06.2022Vydané v Neurocomputing (Amsterdam) (14.06.2022)“… Our network is established on a Spatial-temporal Graph Convolutional…”
Získať plný text
Journal Article -
2
Spatio-temporal graph convolutional autoencoder for transonic wing pressure distribution forecasting
ISSN: 1270-9638Vydavateľské údaje: Elsevier Masson SAS 01.10.2025Vydané v Aerospace science and technology (01.10.2025)“…This study presents a framework for predicting unsteady transonic wing pressure distributions due to pitch and plunge movement, integrating an autoencoder architecture with graph convolutional…”
Získať plný text
Journal Article -
3
Graph autoencoder with mirror temporal convolutional networks for traffic anomaly detection
ISSN: 2045-2322, 2045-2322Vydavateľské údaje: London Nature Publishing Group UK 13.01.2024Vydané v Scientific reports (13.01.2024)“… In this paper, we propose a mirror temporal graph autoencoder (MTGAE) framework to explore anomalies and capture unseen nodes and the spatiotemporal correlation between nodes in the traffic network…”
Získať plný text
Journal Article -
4
Convolutional Graph Autoencoder: A Generative Deep Neural Network for Probabilistic Spatio-Temporal Solar Irradiance Forecasting
ISSN: 1949-3029, 1949-3037Vydavateľské údaje: Piscataway IEEE 01.04.2020Vydané v IEEE transactions on sustainable energy (01.04.2020)“… This probabilistic data generation model, i.e., convolutional graph autoencoder (CGAE), is devised based on the localized first-order approximation…”
Získať plný text
Journal Article -
5
Temporal Graph Convolutional Autoencoder based Fault Detection for Renewable Energy Applications
ISSN: 2769-3899Vydavateľské údaje: IEEE 12.05.2024Vydané v IEEE International Conference on Industrial Cyber Physical Systems (Online) (12.05.2024)“… To address this issue, we propose an autoencoder model that uses a temporal graph convolutional layer to detect faults in the energy generation process…”
Získať plný text
Konferenčný príspevok.. -
6
A Comprehensive Survey on Graph Neural Networks
ISSN: 2162-237X, 2162-2388, 2162-2388Vydavateľské údaje: United States IEEE 01.01.2021Vydané v IEEE transaction on neural networks and learning systems (01.01.2021)“…-Euclidean domains and are represented as graphs with complex relationships and interdependency between objects…”
Získať plný text
Journal Article -
7
A Novel Unsupervised Structural Damage Detection Method Based on TCN-GAT Autoencoder
ISSN: 1424-8220, 1424-8220Vydavateľské údaje: Switzerland MDPI AG 03.11.2025Vydané v Sensors (Basel, Switzerland) (03.11.2025)“… This paper proposes an autoencoder model integrating Temporal Convolutional Networks (TCN) and Graph Attention Networks (GAT…”
Získať plný text
Journal Article -
8
Graph-Variational Convolutional Autoencoder-Based Fault Detection and Diagnosis for Photovoltaic Arrays
ISSN: 2075-1702, 2075-1702Vydavateľské údaje: Basel MDPI AG 01.12.2024Vydané v Machines (Basel) (01.12.2024)“… This paper introduces a deep learning model that combines a graph convolutional network with a variational autoencoder to diagnose faults in solar arrays…”
Získať plný text
Journal Article -
9
DeGTeC: A deep graph-temporal clustering framework for data-parallel job characterization in data centers
ISSN: 0167-739X, 1872-7115Vydavateľské údaje: Elsevier B.V 01.04.2023Vydané v Future generation computer systems (01.04.2023)“… The DeGTeC framework is constructed mainly based on two autoencoders, i.e., TaskAE and JobAE. TaskAE and JobAE contain spectral graph convolutional network…”
Získať plný text
Journal Article -
10
Anomaly Detection Based on Graph Convolutional Network–Variational Autoencoder Model Using Time-Series Vibration and Current Data
ISSN: 2227-7390, 2227-7390Vydavateľské údaje: Basel MDPI AG 01.12.2024Vydané v Mathematics (Basel) (01.12.2024)“…This paper proposes a deep learning-based anomaly detection method using time-series vibration and current data, which were obtained from endurance tests on…”
Získať plný text
Journal Article -
11
Topology and FDIA identification in distribution system state estimation using a data-driven approach
ISSN: 0263-2241Vydavateľské údaje: Elsevier Ltd 01.09.2025Vydané v Measurement : journal of the International Measurement Confederation (01.09.2025)“… To address these issues, a novel denoising autoencoder (DAE) is developed with the use of graph-based temporal convolutional layers in the encoder and decoder stages…”
Získať plný text
Journal Article -
12
Robust Graph Autoencoder-Based Detection of False Data Injection Attacks Against Data Poisoning in Smart Grids
ISSN: 2691-4581, 2691-4581Vydavateľské údaje: IEEE 01.03.2024Vydané v IEEE transactions on artificial intelligence (01.03.2024)“…Machine learning-based detection of false data injection attacks (FDIAs) in smart grids relies on labeled measurement data for training and testing. The…”
Získať plný text
Journal Article -
13
Uncertainty-aware probabilistic travel demand prediction for mobility-on-demand services
ISSN: 0968-090XVydavateľské údaje: Elsevier Ltd 01.12.2025Vydané v Transportation research. Part C, Emerging technologies (01.12.2025)“…•Spatial-temporal deep learning framework for probabilistic MoD demand prediction…”
Získať plný text
Journal Article -
14
Matrix Completion with Variational Graph Autoencoders: Application in Hyperlocal Air Quality Inference
ISSN: 2379-190XVydavateľské údaje: IEEE 01.05.2019Vydané v Proceedings of the ... IEEE International Conference on Acoustics, Speech and Signal Processing (1998) (01.05.2019)“… We formulate air quality inference in this setting as a graph-based matrix completion problem and propose a novel variational model based on graph convolutional autoencoders…”
Získať plný text
Konferenčný príspevok.. -
15
An Integrated Distributed Fault Diagnosis Framework for Large-Scale Industrial Processes Based on Spatio-Temporal Causal Analysis
ISSN: 1551-3203, 1941-0050Vydavateľské údaje: Piscataway IEEE 01.08.2025Vydané v IEEE transactions on industrial informatics (01.08.2025)“… Second, an embedded time convolutional network-based autoencoder is designed to extract spatio-temporal features simultaneously…”
Získať plný text
Journal Article -
16
Graph neural networks: Historical backgrounds, present revolutions, and conventionalization for the future
ISSN: 2364-415X, 2364-4168Vydavateľské údaje: Cham Springer International Publishing 01.11.2025Vydané v International journal of data science and analytics (01.11.2025)“…–temporal graph neural networks (STGNNs), recurrent-based GNNs (RecGNNs), and graph autoencoders (GAEs…”
Získať plný text
Journal Article -
17
Recurrent graph convolutional multi-mesh autoencoder for unsteady transonic aerodynamics
ISSN: 0889-9746Vydavateľské údaje: Elsevier Ltd 01.12.2024Vydané v Journal of fluids and structures (01.12.2024)“… This work presents a geometric-deep-learning multi-mesh autoencoder framework to predict the spatial and temporal evolution of aerodynamic loads for a finite-span wing undergoing different types of motion…”
Získať plný text
Journal Article -
18
Multi-Task Spatial-Temporal Graph Auto-Encoder for Hand Motion Denoising
ISSN: 1077-2626, 1941-0506, 1941-0506Vydavateľské údaje: United States IEEE 01.10.2024Vydané v IEEE transactions on visualization and computer graphics (01.10.2024)“… Our solution is the Multi-task Spatial-Temporal Graph Auto-Encoder (Multi-STGAE), a model that accurately denoises and predicts hand motion by exploiting the inter-dependency of both tasks…”
Získať plný text
Journal Article -
19
A Spatio‐Temporal Enhanced Graph‐Transformer AutoEncoder embedded pose for anomaly detection
ISSN: 1751-9632, 1751-9640Vydavateľské údaje: Stevenage John Wiley & Sons, Inc 01.04.2024Vydané v IET computer vision (01.04.2024)“…‐based video anomaly detection in recent years. The spatio‐temporal graph convolutional network has been proven to be effective in modelling the spatio…”
Získať plný text
Journal Article -
20
A graph-based semi-supervised approach to classification learning in digital geographies
ISSN: 0198-9715, 1873-7587Vydavateľské údaje: Oxford Elsevier Ltd 01.03.2021Vydané v Computers, environment and urban systems (01.03.2021)“…As the distinction between online and physical spaces rapidly degrades, social media have now become an integral component of how many people's everyday…”
Získať plný text
Journal Article