Výsledky vyhľadávania - Surrogate sub-gradient algorithm
-
1
Supply chain networks design with multi-mode demand satisfaction policy
ISSN: 0360-8352, 1879-0550Vydavateľské údaje: New York Elsevier Ltd 01.06.2016Vydané v Computers & industrial engineering (01.06.2016)“…•This paper deals with a supply chain network design with multi-mode demand.•The problem is mathematically formulated as mixed integer linear programming.•A…”
Získať plný text
Journal Article -
2
Parsimonious shooting heuristic for trajectory design of connected automated traffic part II: Computational issues and optimization
ISSN: 0191-2615, 1879-2367Vydavateľské údaje: Oxford Elsevier Ltd 01.01.2017Vydané v Transportation research. Part B: methodological (01.01.2017)“…) proposed a parsimonious shooting heuristic (SH) algorithm for constructing feasible trajectories for a stream of vehicles considering realistic constraints including…”
Získať plný text
Journal Article -
3
A new envelope function for nonsmooth DC optimization
ISSN: 2576-2370Vydavateľské údaje: IEEE 14.12.2020Vydané v Proceedings of the IEEE Conference on Decision & Control (14.12.2020)“…". A gradient method on this surrogate function yields a novel (sub)gradient-free proximal algorithm which is inherently parallelizable and can handle fully nonsmooth formulations…”
Získať plný text
Konferenčný príspevok.. -
4
A Fast and Efficient Data Association of Passive Sensor Tracking
ISBN: 9781424472796, 1424472792Vydavateľské údaje: IEEE 01.05.2010Vydané v 2010 International Conference on Intelligent Computation Technology and Automation (01.05.2010)“… The sub gradient is applied to update the Lagrange multipliers, but it needs to minimize all the sub problems at every iterative time to solve the dual solution in the classic algorithm…”
Získať plný text
Konferenčný príspevok.. -
5
A new envelope function for nonsmooth DC optimization
ISSN: 2331-8422Vydavateľské údaje: Ithaca Cornell University Library, arXiv.org 31.03.2020Vydané v arXiv.org (31.03.2020)“…". A gradient method on this surrogate function yields a novel (sub)gradient-free proximal algorithm which is inherently parallelizable and can handle fully nonsmooth formulations…”
Získať plný text
Paper -
6
Large-margin classification with multiple decision rules
ISSN: 1932-1864, 1932-1872Vydavateľské údaje: Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.04.2016Vydané v Statistical analysis and data mining (01.04.2016)“…Binary classification is a common statistical learning problem in which a model is estimated on a set of covariates for some outcome, indicating the membership…”
Získať plný text
Journal Article -
7
Zeroth-order Proximal Clipped Gradient Method with Shifts for Distributed Stochastic Composite Optimization Problems with Infinite Variance
ISSN: 0885-7474, 1573-7691Vydavateľské údaje: New York Springer Nature B.V 01.11.2025Vydané v Journal of scientific computing (01.11.2025)“…-)gradient information may be unavailable. We present a mini-batch zeroth-order proximal clipped gradient algorithm with shifts, which utilizes the well-known Gaussian smoothing technique to yield unbiased zeroth-order gradient estimators…”
Získať plný text
Journal Article -
8
Zeroth-order Proximal Clipped Gradient Method with Shifts for Distributed Stochastic Composite Optimization Problems with Infinite Variance: Zeroth-order Proximal Clipped Gradient Method with
ISSN: 0885-7474, 1573-7691Vydavateľské údaje: New York Springer US 22.09.2025Vydané v Journal of scientific computing (22.09.2025)“…-)gradient information may be unavailable. We present a mini-batch zeroth-order proximal clipped gradient algorithm with shifts, which utilizes the well-known Gaussian smoothing technique to yield unbiased zeroth-order gradient estimators…”
Získať plný text
Journal Article -
9
Large-Margin Classification with Multiple Decision Rules
ISSN: 2331-8422Vydavateľské údaje: Ithaca Cornell University Library, arXiv.org 19.11.2014Vydané v arXiv.org (19.11.2014)“…Binary classification is a common statistical learning problem in which a model is estimated on a set of covariates for some outcome indicating the membership…”
Získať plný text
Paper -
10
Optimization methods for regularized convex formulations in machine learning
ISBN: 9781267055095, 126705509XVydavateľské údaje: ProQuest Dissertations & Theses 01.01.2011“…We develop efficient numerical optimization algorithms for regularized convex formulations that appear in a variety of areas such as machine learning, statistics, and signal processing…”
Získať plný text
Dissertation -
11
A Zeroth-order Proximal Stochastic Gradient Method for Weakly Convex Stochastic Optimization
ISSN: 2331-8422Vydavateľské údaje: Ithaca Cornell University Library, arXiv.org 07.11.2022Vydané v arXiv.org (07.11.2022)“… We consider nonsmooth and nonlinear stochastic composite problems, for which (sub-)gradient information might be unavailable…”
Získať plný text
Paper

