Výsledky vyhľadávania - Spatio-temporal autoencoder

  1. 1

    Spatio-Temporal AutoEncoder for Traffic Flow Prediction Autor Liu, Mingzhe, Zhu, Tongyu, Ye, Junchen, Meng, Qingxin, Sun, Leilei, Du, Bowen

    ISSN: 1524-9050, 1558-0016
    Vydavateľské údaje: New York IEEE 01.05.2023
    “… Along this line, we propose a novel autoencoder-based traffic flow prediction method, named Spatio-Temporal AutoEncoder (ST-AE…”
    Získať plný text
    Journal Article
  2. 2

    Map-Informed Trajectory Recovery With Adaptive Spatio-Temporal Autoencoder Autor Ye, Yongchao, Wang, Ao, Zeb, Adnan, Zhang, Shiyao, Jianqiao Yu, James

    ISSN: 1524-9050, 1558-0016
    Vydavateľské údaje: IEEE 01.01.2025
    “… To address these challenges, we propose a novel Map-informed Adaptive Spatio-Temporal Autoencoder, which follows an encoder-decoder architecture for trajectory recovery…”
    Získať plný text
    Journal Article
  3. 3

    Fault detection for lithium-ion batteries of electric vehicles with spatio-temporal autoencoder Autor Li, Heng, Liu, Zhijun, Bin Kaleem, Muaaz, Duan, Lijun, Ruan, Siqi, Liu, Weirong

    ISSN: 0306-2619
    Vydavateľské údaje: Elsevier Ltd 15.08.2025
    Vydané v Applied energy (15.08.2025)
    “… In this paper, a spatio-temporal autoencoder is proposed to address this limitation by learning the complex time dependence of time series data while considering inconsistencies within the battery pack…”
    Získať plný text
    Journal Article
  4. 4

    MDSTA: masked diffusion spatio-temporal autoencoder for multimodal remote sensing image classification Autor Yue, Zongqin, Xu, Jindong, Li, Ziyi, Xing, Haihua, Cheng, Xiang

    ISSN: 0143-1161, 1366-5901
    Vydavateľské údaje: Taylor & Francis 03.06.2025
    “… information when one modality is missing, resulting in unsatisfying performance. To address this, we propose the Masked Diffusion Spatio-Temporal Autoencoder (MDSTA…”
    Získať plný text
    Journal Article
  5. 5

    Abnormal Event Detection in Videos Using Hybrid Spatio-Temporal Autoencoder Autor Wang, Lin, Zhou, Fuqiang, Li, Zuoxin, Zuo, Wangxia, Tan, Haishu

    ISSN: 2381-8549
    Vydavateľské údaje: IEEE 01.10.2018
    “… Based on the LSTM Encoder-Decoder and the Convolutional Autoencoder, we explore a hybrid autoencoder architecture, which not only extracts better spatio-temporal context, but also improves…”
    Získať plný text
    Konferenčný príspevok..
  6. 6

    A SpatioTemporal Enhanced Graph‐Transformer AutoEncoder embedded pose for anomaly detection Autor Zhu, Honglei, Wei, Pengjuan, Xu, Zhigang

    ISSN: 1751-9632, 1751-9640
    Vydavateľské údaje: Stevenage John Wiley & Sons, Inc 01.04.2024
    Vydané v IET computer vision (01.04.2024)
    “…‐based video anomaly detection in recent years. The spatiotemporal graph convolutional network has been proven to be effective in modelling the spatio…”
    Získať plný text
    Journal Article
  7. 7

    Reverse erasure guided spatio-temporal autoencoder with compact feature representation for video anomaly detection Autor Zhong, Yuanhong, Chen, Xia, Jiang, Jinyang, Ren, Fan

    ISSN: 1674-733X, 1869-1919
    Vydavateľské údaje: Beijing Science China Press 01.09.2022
    Vydané v Science China. Information sciences (01.09.2022)
    “…Conclusion In conventional video anomaly detection based on deep learning, the deep network is optimized without focus and the similarity between different…”
    Získať plný text
    Journal Article
  8. 8

    Enhancing Video Anomaly Detection Using Spatio-Temporal Autoencoders and Convolutional LSTM Networks Autor Almahadin, Ghayth, Subburaj, Maheswari, Hiari, Mohammad, Sathasivam Singaram, Saranya, Kolla, Bhanu Prakash, Dadheech, Pankaj, Vibhute, Amol D., Sengan, Sudhakar

    ISSN: 2661-8907, 2662-995X, 2661-8907
    Vydavateľské údaje: Singapore Springer Nature Singapore 11.01.2024
    Vydané v SN computer science (11.01.2024)
    “… By leveraging a spatio-temporal method, the proposed approach harnesses the power of both spatial and temporal dimensions…”
    Získať plný text
    Journal Article
  9. 9

    Spatio-temporal masked autoencoder-based phonetic segments classification from ultrasound Autor Dan, Xi, Xu, Kele, Zhou, Yihang, Yang, Chuanguang, Chen, Yihao, Dou, Yutao, Yang, Cheng

    ISSN: 0167-6393
    Vydavateľské údaje: Elsevier B.V 01.04.2025
    Vydané v Speech communication (01.04.2025)
    “…The integration of Ultrasound Tongue Imaging (UTI) into clinical linguistics and phonetics research facilitates the examination of articulatory patterns and…”
    Získať plný text
    Journal Article
  10. 10

    Flow field prediction in bed configurations: A parametric spatio-temporal convolutional autoencoder approach Autor Mjalled, Ali, Namdar, Reza, Reineking, Lucas, Norouzi, Mohammad, Varnik, Fathollah, Mönnigmann, Martin

    ISSN: 1040-7790, 1521-0626
    Vydavateľské údaje: Philadelphia Taylor & Francis 02.12.2025
    “… The ROM consists of a parametric spatio-temporal convolutional autoencoder. The neural network architecture comprises two main components…”
    Získať plný text
    Journal Article
  11. 11

    LSTENet: Cement productivity prediction using a self-attention spatio-temporal variational autoencoder Autor Shi, Guangsi, Pan, Shirui, Zou, Ruiping

    ISSN: 0032-5910, 1873-328X
    Vydavateľské údaje: Elsevier B.V 01.03.2024
    Vydané v Powder technology (01.03.2024)
    “…In the advent of the Industry 4.0 paradigm, intelligent manufacturing has gained prominence with the integration of advanced Artificial Intelligence (AI)…”
    Získať plný text
    Journal Article
  12. 12

    DeepFall: Non-Invasive Fall Detection with Deep Spatio-Temporal Convolutional Autoencoders Autor Nogas, Jacob, Khan, Shehroz S., Mihailidis, Alex

    ISSN: 2509-4971, 2509-498X
    Vydavateľské údaje: Cham Springer International Publishing 01.03.2020
    “… The DeepFall framework presents the novel use of deep spatio-temporal convolutional autoencoders to learn spatial and temporal features from normal activities using non-invasive sensing modalities…”
    Získať plný text
    Journal Article
  13. 13

    STMemAE: An Instance-Level Based Spatio-Temporal Memory Autoencoder for Unsupervised Vision-Based Seizure Detection Autor Hu, Dinghan, Wu, Kai, Fang, Yuan, Jiang, Tiejia, Gao, Feng, Cao, Jiuwen

    ISSN: 2471-285X, 2471-285X
    Vydavateľské údaje: Piscataway IEEE 01.10.2025
    “… With these regards, an effective instance-level based spatio-temporal memory autoencoder, called STMemAE, is proposed for unsupervised vision-based seizure detection in this paper…”
    Získať plný text
    Journal Article
  14. 14

    Spatio-temporal graph convolutional autoencoder for transonic wing pressure distribution forecasting Autor Immordino, Gabriele, Vaiuso, Andrea, Da Ronch, Andrea, Righi, Marcello

    ISSN: 1270-9638
    Vydavateľské údaje: Elsevier Masson SAS 01.10.2025
    Vydané v Aerospace science and technology (01.10.2025)
    “… Four different temporal schemes have been tested, where the spatio-temporal graph convolutional network achieved the best accuracy thanks to convolution in both time and space…”
    Získať plný text
    Journal Article
  15. 15

    Multi-level convolutional autoencoder networks for parametric prediction of spatio-temporal dynamics Autor Xu, Jiayang, Duraisamy, Karthik

    ISSN: 0045-7825, 1879-2138
    Vydavateľské údaje: Amsterdam Elsevier B.V 01.12.2020
    “… A temporal convolutional autoencoder (TCAE) serves as the second level, which further encodes the output sequence from the first level along the temporal dimension, and outputs a set of latent variables that encapsulate the spatio-temporal…”
    Získať plný text
    Journal Article
  16. 16

    Unsupervised anomalous event detection in videos using spatio-temporal inter-fused autoencoder Autor Aslam, Nazia, Kolekar, Maheshkumar H

    ISSN: 1380-7501, 1573-7721
    Vydavateľské údaje: New York Springer US 01.12.2022
    Vydané v Multimedia tools and applications (01.12.2022)
    “… In this paper, we propose an end-to-end trainable Inter-fused Autoencoder (IFA) which is designed using the assemblage of CNN and LSTM layers to detect the unwonted events in a video sequence…”
    Získať plný text
    Journal Article
  17. 17

    Autoencoder-based abnormal activity detection using parallelepiped spatio-temporal region Autor George, Michael, Jose, Babita Roslind, Mathew, Jimson, Kokare, Pranjali

    ISSN: 1751-9632, 1751-9640, 1751-9640
    Vydavateľské údaje: The Institution of Engineering and Technology 01.02.2019
    Vydané v IET computer vision (01.02.2019)
    “… Autoencoders can be configured to detect abnormal patterns. The authors have used these abilities of the autoencoders to detect abnormalities in the HOFM features extracted from their novel spatio-temporal…”
    Získať plný text
    Journal Article
  18. 18

    Estimation of Clinical Tremor using Spatio-Temporal Adversarial AutoEncoder Autor Zhang, Li, Koesmahargyo, Vidya, Galatzer-Levy, Isaac

    Vydavateľské údaje: IEEE 10.01.2021
    “… In this work, we propose a spatio-temporal adversarial autoencoder (ST-AAE) for clinical assessment of hand tremor frequency and severity…”
    Získať plný text
    Konferenčný príspevok..
  19. 19

    Spatio-Temporal Attention Adversarial Autoencoders for Enhanced Anomaly Detection in High-Pressure Grinding Rolls Autor Zhang, Danwei, Yu, Wen, Xu, Quan, Chai, Tianyou

    ISSN: 1551-3203, 1941-0050
    Vydavateľské údaje: Piscataway IEEE 01.04.2025
    “…: The spatio-temporal attention-based (STA) minimal gated unit (MGU) adversarial autoencoder (AAE…”
    Získať plný text
    Journal Article
  20. 20

    Intrusion detection on robot cameras using spatio-temporal autoencoders: A self-driving car application Autor Amrouche, Faouzi, Lagraa, Sofiane, Frank, Raphael, State, Radu

    ISSN: 2577-2465
    Vydavateľské údaje: IEEE 01.05.2020
    Vydané v IEEE Vehicular Technology Conference (01.05.2020)
    “… Our solution is based on spatio-temporal autoencoders used to truthfully reconstruct the camera frames and detect abnormal ones by measuring the difference with the input. We test our approach on a real-word dataset, i.e. flows coming from embedded cameras of self-driving cars. Our solution outperforms the existing works on different scenarios…”
    Získať plný text
    Konferenčný príspevok..