Výsledky vyhľadávania - Residual learning convolutional denoising autoencoder

  1. 1

    Automatic modulation classification of radar signals utilizing X-net Autor Chen, Kuiyu, Zhang, Jingyi, Chen, Si, Zhang, Shuning, Zhao, Huichang

    ISSN: 1051-2004
    Vydavateľské údaje: Elsevier Inc 30.04.2022
    Vydané v Digital signal processing (30.04.2022)
    “… Owing to the X-shaped structure, the recognition network is named X-net. A residual learning convolutional denoising autoencoder (RLCDAE…”
    Získať plný text
    Journal Article
  2. 2

    Self‐supervised representation learning of metro interior noise based on variational autoencoder and deep embedding clustering Autor Wang, Yang, Xiao, Hong, Zhang, Zhihai, Guo, Xiaoxuan, Liu, Qiang

    ISSN: 1093-9687, 1467-8667
    Vydavateľské údaje: Hoboken Wiley Subscription Services, Inc 01.02.2025
    “…) deep residual convolutional…”
    Získať plný text
    Journal Article
  3. 3

    Low-dose CT restoration via stacked sparse denoising autoencoders Autor Liu, Yan, Zhang, Yi

    ISSN: 0925-2312, 1872-8286
    Vydavateľské údaje: Elsevier B.V 05.04.2018
    Vydané v Neurocomputing (Amsterdam) (05.04.2018)
    “…), dictionary learning, block-matching 3D (BM3D), convolutional denoising autoencoders (CDA) and U-Net based residual convolutional neural network (KAIST-Net…”
    Získať plný text
    Journal Article
  4. 4

    A hybrid semantic attribute-based zero-shot learning model for bearing fault diagnosis under unknown working conditions Autor Shang, Zhiwu, Tang, Lutai, Pan, Cailu, Cheng, Hongchuan

    ISSN: 0952-1976
    Vydavateľské údaje: Elsevier Ltd 01.10.2024
    “… Zero-shot learning (ZSL) can identify samples unseen during the training phase and has now been applied to the field of fault diagnosis…”
    Získať plný text
    Journal Article
  5. 5

    Automatic Fabric Defect Detection with a Multi-Scale Convolutional Denoising Autoencoder Network Model Autor Mei, Shuang, Wang, Yudan, Wen, Guojun

    ISSN: 1424-8220, 1424-8220
    Vydavateľské údaje: Switzerland MDPI AG 02.04.2018
    Vydané v Sensors (Basel, Switzerland) (02.04.2018)
    “… This approach is used to reconstruct image patches with a convolutional denoising autoencoder network at multiple Gaussian pyramid levels and to synthesize detection results from the corresponding resolution channels…”
    Získať plný text
    Journal Article
  6. 6

    Improving brain MRI denoising using convolutional AutoEncoder and sparse representations Autor Velayudham, A, Madhan Kumar, K., Krishna Priya, MS

    ISSN: 0957-4174
    Vydavateľské údaje: Elsevier Ltd 05.03.2025
    Vydané v Expert systems with applications (05.03.2025)
    “… However, noise often degrades image quality, leading to inaccurate diagnoses. To address this issue, a Convolutional AutoEncoder-based Orthogonal Matching Pursuit (CAE-OMP…”
    Získať plný text
    Journal Article
  7. 7

    Fault Diagnosis of Rolling Bearings Based on a Residual Dilated Pyramid Network and Full Convolutional Denoising Autoencoder Autor Shi, Hongmei, Chen, Jingcheng, Si, Jin, Zheng, Changchang

    ISSN: 1424-8220, 1424-8220
    Vydavateľské údaje: Basel MDPI AG 09.10.2020
    Vydané v Sensors (Basel, Switzerland) (09.10.2020)
    “… diagnosis methods deteriorate sharply. In this regard, this paper proposes a new intelligent diagnosis algorithm for rolling bearing faults based on a residual dilated pyramid network and full convolutional denoising autoencoder (RDPN-FCDAE…”
    Získať plný text
    Journal Article
  8. 8

    Galaxy Model Subtraction with a Convolutional Denoising Autoencoder Autor Liu, Rongrong, Peng, Eric W., Wang, Kaixiang, Ferrarese, Laura, Côté, Patrick

    ISSN: 0004-637X, 1538-4357, 1538-4357
    Vydavateľské údaje: Philadelphia The American Astronomical Society 01.12.2025
    Vydané v The Astrophysical journal (01.12.2025)
    “… We build a convolutional denoising autoencoder (DAE) for galaxy model subtraction: images are compressed to a latent representation and reconstructed to yield the smooth galaxy, suppressing other objects…”
    Získať plný text
    Journal Article
  9. 9

    Wavelet enabled convolutional autoencoder based deep neural network for hyperspectral image denoising Autor Paul, Arati, Kundu, Ahana, Chaki, Nabendu, Dutta, Dibyendu, Jha, C. S.

    ISSN: 1380-7501, 1573-7721
    Vydavateľské údaje: New York Springer US 01.01.2022
    Vydané v Multimedia tools and applications (01.01.2022)
    “…Denoising of hyperspectral images (HSIs) is an important preprocessing step to enhance the performance of its analysis and interpretation…”
    Získať plný text
    Journal Article
  10. 10

    ERA-WGAT: Edge-enhanced residual autoencoder with a window-based graph attention convolutional network for low-dose CT denoising Autor Liu, Han, Liao, Peixi, Chen, Hu, Zhang, Yi

    ISSN: 2156-7085, 2156-7085
    Vydavateľské údaje: United States Optica Publishing Group 01.11.2022
    Vydané v Biomedical optics express (01.11.2022)
    “… Although various low-dose CT methods using deep learning techniques have produced impressive results, convolutional neural network based methods focus more on local information and hence are very…”
    Získať plný text
    Journal Article
  11. 11

    Deep Residual Autoencoders for Expectation Maximization-Inspired Dictionary Learning Autor Tolooshams, Bahareh, Dey, Sourav, Ba, Demba

    ISSN: 2162-237X, 2162-2388, 2162-2388
    Vydavateľské údaje: Piscataway IEEE 01.06.2021
    “…), that solves convolutional dictionary learning problems, thus establishing a link between dictionary learning and neural networks…”
    Získať plný text
    Journal Article
  12. 12

    Traffic sign classification with deformable convolution based on denoising residual convolutional autoencoder region localization Autor Pan, Hao, Guo, Qianlu, Yuan, Decheng, Pan, Duotao, Li, Dong, Yu, Qianxin

    ISSN: 2631-8695, 2631-8695
    Vydavateľské údaje: IOP Publishing 31.12.2025
    Vydané v Engineering Research Express (31.12.2025)
    “… autoencoder for important region localization and deformable convolution (DRCAE-DCN). The denoising residual convolutional autoencoder is used to extract feature…”
    Získať plný text
    Journal Article
  13. 13

    One-Dimensional Residual Convolutional Autoencoder Based Feature Learning for Gearbox Fault Diagnosis Autor Yu, Jianbo, Zhou, Xingkang

    ISSN: 1551-3203, 1941-0050
    Vydavateľské údaje: Piscataway IEEE 01.10.2020
    “… In this article, a new DNN, one-dimensional residual convolutional autoencoder (1-DRCAE), is proposed for learning features from vibration signals directly in an unsupervised-learning way…”
    Získať plný text
    Journal Article
  14. 14

    Deep Residual U-Net Autoencoder with Weighted Overlapping Reconstruction for EMG Signal Denoising Autor Mehmood, Atif, Wiora, Jozef

    ISBN: 9788362065493, 8362065494
    ISSN: 2326-0262
    Vydavateľské údaje: Division of Signal Processing and Electronic Syste 17.09.2025
    “… This paper introduces an advanced deep learning framework for EMG denoising, centred on a U-Net-inspired convolutional autoencoder with integrated residual blocks and skip connections…”
    Získať plný text
    Konferenčný príspevok..
  15. 15

    Dose Reduction in Scintigraphic Imaging Through Enhanced Convolutional Autoencoder-Based Denoising Autor Bouzianis, Nikolaos, Stathopoulos, Ioannis, Valsamaki, Pipitsa, Rapti, Efthymia, Trikopani, Ekaterini, Apostolidou, Vasiliki, Kotini, Athanasia, Zissimopoulos, Athanasios, Adamopoulos, Adam, Karavasilis, Efstratios

    ISSN: 2313-433X, 2313-433X
    Vydavateľské údaje: Switzerland MDPI AG 14.06.2025
    Vydané v Journal of imaging (14.06.2025)
    “…Objective: This study proposes a novel deep learning approach for enhancing low-dose bone scintigraphy images using an Enhanced Convolutional Autoencoder (ECAE…”
    Získať plný text
    Journal Article
  16. 16

    Clutter Suppression in GPR Imaging Using an Improved Robust Convolutional Autoencoder Autor Fan, Pengjie, Shen, Shaoxiang, Wang, Guangyu

    ISSN: 0013-5194, 1350-911X
    Vydavateľské údaje: Stevenage John Wiley & Sons, Inc 01.01.2025
    Vydané v Electronics letters (01.01.2025)
    “… We propose a clutter suppression algorithm based on an improved robust convolutional autoencoder (U‐RCAE…”
    Získať plný text
    Journal Article
  17. 17

    Deep Convolutional Denoising Autoencoders with Network Structure Optimization for the High-Fidelity Attenuation of Random GPR Noise Autor Feng, Deshan, Wang, Xiangyu, Wang, Xun, Ding, Siyuan, Zhang, Hua

    ISSN: 2072-4292, 2072-4292
    Vydavateľské údaje: Basel MDPI AG 01.05.2021
    Vydané v Remote sensing (Basel, Switzerland) (01.05.2021)
    “…). In this paper, a novel network structure for convolutional denoising autoencoders (CDAEs) was proposed to effectively resolve various problems in the noise attenuation…”
    Získať plný text
    Journal Article
  18. 18

    Colour‐patterned fabric defect detection based on an unsupervised multi‐scale U‐shaped denoising convolutional autoencoder model Autor Zhang, Hongwei, Liu, Shuting, Tan, Quanlu, Lu, Shuai, Yao, Le, Ge, Zhiqiang

    ISSN: 1472-3581, 1478-4408
    Vydavateľské údaje: Bradford Wiley Subscription Services, Inc 01.10.2022
    Vydané v Coloration technology (01.10.2022)
    “…‐patterned fabric images. Second, a multi‐scale U‐shaped denoising convolutional autoencoder was modelled using defect…”
    Získať plný text
    Journal Article
  19. 19

    Fully-Gated Denoising Auto-Encoder for Artifact Reduction in ECG Signals Autor Shaheen, Ahmed, Ye, Liang, Karunaratne, Chrishni, Seppänen, Tapio

    ISSN: 1424-8220, 1424-8220
    Vydavateľské údaje: Switzerland MDPI AG 01.02.2025
    Vydané v Sensors (Basel, Switzerland) (01.02.2025)
    “… This study proposes a novel Fully-Gated Denoising Autoencoder (FGDAE) to significantly reduce the effects of different artifacts on ECG signals…”
    Získať plný text
    Journal Article
  20. 20

    An Unsupervised-Learning-Based Approach for Automated Defect Inspection on Textured Surfaces Autor Mei, Shuang, Yang, Hua, Yin, Zhouping

    ISSN: 0018-9456, 1557-9662
    Vydavateľské údaje: New York IEEE 01.06.2018
    “… This approach is carried out by reconstructing image patches with convolutional denoising autoencoder networks at different Gaussian pyramid levels, and synthesizing detection results…”
    Získať plný text
    Journal Article