Výsledky vyhľadávania - Relevance factor variational autoencoder

  • Zobrazené výsledky 1 - 16 z 16
Upresniť hľadanie
  1. 1

    Developing a fair and interpretable representation of the clock drawing test for mitigating low education and racial bias Autor Zhang, Jiaqing, Bandyopadhyay, Sabyasachi, Kimmet, Faith, Wittmayer, Jack, Khezeli, Kia, Libon, David J., Price, Catherine C., Rashidi, Parisa

    ISSN: 2045-2322, 2045-2322
    Vydavateľské údaje: London Nature Publishing Group UK 29.07.2024
    Vydané v Scientific reports (29.07.2024)
    “…The clock drawing test (CDT) is a neuropsychological assessment tool to screen an individual’s cognitive ability. In this study, we developed a Fair and…”
    Získať plný text
    Journal Article
  2. 2

    Explainable semi-supervised deep learning shows that dementia is associated with small, avocado-shaped clocks with irregularly placed hands Autor Bandyopadhyay, Sabyasachi, Wittmayer, Jack, Libon, David J., Tighe, Patrick, Price, Catherine, Rashidi, Parisa

    ISSN: 2045-2322, 2045-2322
    Vydavateľské údaje: London Nature Publishing Group UK 06.05.2023
    Vydané v Scientific reports (06.05.2023)
    “… In this study, we used the relevance factor variational autoencoder (RF-VAE), a deep generative neural network, to represent digitized clock drawings from multiple institutions using an optimal number of disentangled latent factors…”
    Získať plný text
    Journal Article
  3. 3

    A vision transformer approach for fully automated and scalable dementia screening using clock drawing test images Autor Bone, Michael B., Freedman, Morris, Black, Sandra E., Felsky, Daniel, Kumar, Sanjeev, Pugh, Bradley, Strother, Stephen C., Tang‐Wai, David F., Tartaglia, Maria Carmela, Buchsbaum, Bradley R.

    ISSN: 2352-8729, 2352-8729
    Vydavateľské údaje: United States Wiley 01.07.2025
    “…‐scored features (74.3%) and existing deep learning models (MiniVGG = 73.3%, MobileNetV2 = 72.3%, relevance factor variational autoencoder…”
    Získať plný text
    Journal Article
  4. 4

    ARD-VAE: A Statistical Formulation to Find the Relevant Latent Dimensions of Variational Autoencoders Autor Saha, Surojit, Joshi, Sarang, Whitaker, Ross

    ISSN: 2642-9381
    Vydavateľské údaje: IEEE 26.02.2025
    “…The variational autoencoder (VAE) [19], [41] is a popular, deep, latent-variable model (DLVM…”
    Získať plný text
    Konferenčný príspevok..
  5. 5

    Visualizing the dynamic change of Ocular Response Analyzer waveform using Variational Autoencoder in association with the peripapillary retinal arteries angle Autor Asano, Shotaro, Asaoka, Ryo, Yamashita, Takehiro, Aoki, Shuichiro, Matsuura, Masato, Fujino, Yuri, Murata, Hiroshi, Nakakura, Shunsuke, Nakao, Yoshitaka, Kiuchi, Yoshiaki

    ISSN: 2045-2322, 2045-2322
    Vydavateľské údaje: London Nature Publishing Group UK 20.04.2020
    Vydané v Scientific reports (20.04.2020)
    “…), using a generative deep learning method of variational autoencoder (VAE). Fifty-four eyes of 52 subjects were enrolled…”
    Získať plný text
    Journal Article
  6. 6

    FaIRClocks: Fair and Interpretable Representation of the Clock Drawing Test for mitigating classifier bias against lower educational groups Autor Zhang, Jiaqing, Bandyopadhyay, Sabyasachi, Kimmet, Faith, Wittmayer, Jack, Khezeli, Kia, Libon, David J, Price, Catherine C, Rashidi, Parisa

    ISSN: 2693-5015, 2693-5015
    Vydavateľské údaje: United States 09.10.2023
    Vydané v Research square (09.10.2023)
    “… We represented clock drawings with a 10-dimensional latent embedding using Relevance Factor Variational Autoencoder (RF-VAE…”
    Zistit podrobnosti o prístupe
    Journal Article
  7. 7

    GF-LRP: A Method for Explaining Predictions Made by Variational Graph Auto-Encoders Autor Rodrigo-Bonet, Esther, Deligiannis, Nikos

    ISSN: 2471-285X, 2471-285X
    Vydavateľské údaje: Piscataway IEEE 01.02.2025
    “…Variational graph autoencoders (VGAEs) combine the best of graph convolutional networks (GCNs…”
    Získať plný text
    Journal Article
  8. 8

    Deep learning for the harmonization of structural MRI scans: a survey Autor Abbasi, Soolmaz, Lan, Haoyu, Choupan, Jeiran, Sheikh-Bahaei, Nasim, Pandey, Gaurav, Varghese, Bino

    ISSN: 1475-925X, 1475-925X
    Vydavateľské údaje: London BioMed Central 31.08.2024
    Vydané v Biomedical engineering online (31.08.2024)
    “… These variations affect data consistency and compatibility across different sources. Image harmonization is a critical step to mitigate the effects of factors like inherent…”
    Získať plný text
    Journal Article
  9. 9

    Enhancing Multi-Turn Dialogue Generation with MoE-Based Multi-Latent Variable Fusion Autor Cui, Zishun, Sun, Xiao

    Vydavateľské údaje: IEEE 11.04.2025
    “… To address the one-to-many mapping problem caused by conversational uncertainty, we propose a novel framework integrating Variational Autoencoder (VAE…”
    Získať plný text
    Konferenčný príspevok..
  10. 10

    Optimizing blood-brain barrier permeability in KRAS inhibitors: A structure-constrained molecular generation approach Autor Sheng, Xia, Gui, Yike, Yu, Jie, Wang, Yitian, Li, Zhenghao, Zhang, Xiaoya, Xing, Yuxin, Wang, Yuqing, Li, Zhaojun, Zheng, Mingyue, Yang, Liquan, Li, Xutong

    ISSN: 2095-1779, 2214-0883, 2214-0883
    Vydavateľské údaje: China Elsevier B.V 01.08.2025
    Vydané v Journal of pharmaceutical analysis (01.08.2025)
    “… Our approach utilizes a variational autoencoder (VAE) generative model integrated with reinforcement learning for multi-objective optimization…”
    Získať plný text
    Journal Article
  11. 11

    Period-aggregated transformer for learning latent seasonalities in long-horizon financial time series Autor Tang, Zhenyang, Huang, Jinshui, Rinprasertmeechai, Denisa

    ISSN: 1932-6203, 1932-6203
    Vydavateľské údaje: United States Public Library of Science 08.08.2024
    Vydané v PloS one (08.08.2024)
    “…). The model integrates a variational autoencoder (VAE) with a period-to-period attention mechanism for multistep prediction in the financial…”
    Získať plný text
    Journal Article
  12. 12

    Survey on sampling conditioned brain images and imaging measures with generative models Autor Cheong, Sehyoung, Lee, Hoseok, Kim, Won Hwa

    ISSN: 2093-9868, 2093-985X, 2093-985X
    Vydavateľské údaje: Korea The Korean Society of Medical and Biological Engineering 01.09.2025
    Vydané v Biomedical engineering letters (01.09.2025)
    “… These models, such as Variational Autoencoders (VAEs), Generative Adversarial Networks (GANs), and diffusion models, leverage deep learning to generate high-quality brain images while maintaining biological and clinical relevance…”
    Získať plný text
    Journal Article
  13. 13

    Uncovering Population PK Covariates from VAE-Generated Latent Spaces Autor Perazzolo, Diego, Castellani, Chiara, Grisan, Enrico

    ISSN: 2694-0604
    Vydavateľské údaje: United States 01.07.2025
    “… Traditional methods may fail to capture hidden patterns within the data. In this study, we propose a data-driven, model-free framework that integrates Variational Autoencoders (VAEs…”
    Zistit podrobnosti o prístupe
    Journal Article
  14. 14

    Joint inference of discrete cell types and continuous type-specific variability in single-cell datasets with MMIDAS Autor Marghi, Yeganeh, Gala, Rohan, Baftizadeh, Fahimeh, Sümbül, Uygar

    ISSN: 2692-8205, 2692-8205
    Vydavateľské údaje: United States Cold Spring Harbor Laboratory Press 02.07.2024
    Vydané v bioRxiv (02.07.2024)
    “…Reproducible definition and identification of cell types is essential to enable investigations into their biological function, and understanding their relevance in the context of development, disease and evolution…”
    Získať plný text
    Journal Article Paper
  15. 15

    Deep Generative model with Hierarchical Latent Factors for Time Series Anomaly Detection Autor Challu, Cristian, Jiang, Peihong, Ying Nian Wu, Callot, Laurent

    ISSN: 2331-8422
    Vydavateľské údaje: Ithaca Cornell University Library, arXiv.org 25.02.2022
    Vydané v arXiv.org (25.02.2022)
    “… Among reconstruction-based models, most previous work has focused on Variational Autoencoders and Generative Adversarial Networks…”
    Získať plný text
    Paper
  16. 16

    Latent feature disentanglement for 3D meshes Autor Levinson, Jake, Sud, Avneesh, Makadia, Ameesh

    ISSN: 2331-8422
    Vydavateľské údaje: Ithaca Cornell University Library, arXiv.org 07.06.2019
    Vydané v arXiv.org (07.06.2019)
    “… In this paper we build upon recently introduced 3D mesh-convolutional Variational AutoEncoders which have shown great promise for learning rich representations of deformable 3D shapes…”
    Získať plný text
    Paper