Výsledky vyhľadávania - Reduced Convolutional Autoencoder

  1. 1

    Non-linear Manifold Reduced-Order Models with Convolutional Autoencoders and Reduced Over-Collocation Method Autor Romor, Francesco, Stabile, Giovanni, Rozza, Gianluigi

    ISSN: 0885-7474, 1573-7691
    Vydavateľské údaje: New York Springer US 01.03.2023
    Vydané v Journal of scientific computing (01.03.2023)
    “… reduced-order models based on linear subspace approximations. Among the possible solutions, there are purely data-driven methods that leverage autoencoders…”
    Získať plný text
    Journal Article
  2. 2

    Non‐intrusive reduced‐order modeling using convolutional autoencoders Autor Halder, Rakesh, Fidkowski, Krzysztof J., Maki, Kevin J.

    ISSN: 0029-5981, 1097-0207
    Vydavateľské údaje: Hoboken, USA John Wiley & Sons, Inc 15.11.2022
    “… In this work, we present a non‐intrusive ROM framework for steady‐state parameterized partial differential equations that uses convolutional autoencoders to provide a nonlinear…”
    Získať plný text
    Journal Article
  3. 3

    Coupling of a lightweight model of reduced convolutional autoencoder with linear SVM classifier to detect brain tumours on FPGA Autor Chatterjee, Soumita, Pandit, Soumya, Das, Arpita

    ISSN: 0957-4174
    Vydavateľské údaje: Elsevier Ltd 25.09.2025
    Vydané v Expert systems with applications (25.09.2025)
    “… Following this preprocessing step, a dual-stack Reduced Convolutional Autoencoder (RCA) unit is coupled with a linear Support Vector Machine (SVM) classifier…”
    Získať plný text
    Journal Article
  4. 4

    Epileptic Seizure Recognition Using Reduced Deep Convolutional Stack Autoencoder and Improved Kernel RVFLN From EEG Signals Autor Sahani, Mrutyunjaya, Rout, Susanta Kumar, Dash, Pradipta Kishor

    ISSN: 1932-4545, 1940-9990, 1940-9990
    Vydavateľské údaje: New York IEEE 01.06.2021
    “…In this paper, reduced deep convolutional stack autoencoder (RDCSAE) and improved kernel random vector functional link network (IKRVFLN…”
    Získať plný text
    Journal Article
  5. 5

    Reduced-order modeling via convolutional autoencoder for emulating combustion of hydrogen/methane fuel blends Autor Ding, Siyu, Ni, Chenxu, Chu, Xu, Lu, Qingzhou, Wang, Xingjian

    ISSN: 0010-2180
    Vydavateľské údaje: Elsevier Inc 01.04.2025
    Vydané v Combustion and flame (01.04.2025)
    “… This study presents parametric reduced order models (ROMs) that leverage deep neural network-based dimension reduction through a convolutional autoencoder (AE…”
    Získať plný text
    Journal Article
  6. 6

    Slim multi-scale convolutional autoencoder-based reduced-order models for interpretable features of a complex dynamical system Autor Teutsch, Philipp, Pfeffer, Philipp, Sharifi Ghazijahani, Mohammad, Cierpka, Christian, Schumacher, Jörg, Mäder, Patrick

    ISSN: 2770-9019, 2770-9019
    Vydavateľské údaje: AIP Publishing LLC 01.03.2025
    Vydané v APL machine learning (01.03.2025)
    “… Within the context of reduced-order models, convolutional autoencoders (CAEs) pose a universally applicable alternative to conventional approaches…”
    Získať plný text
    Journal Article
  7. 7

    Precise single step and multistep short-term photovoltaic parameters forecasting based on reduced deep convolutional stack autoencoder and minimum variance multikernel random vector functional network Autor Sahani, Mrutyunjaya, Choudhury, Sasmita, Siddique, Marif Daula, Parida, Tanmoy, Dash, Pradipta Kishore, Panda, Sanjib Kumar

    ISSN: 0952-1976
    Vydavateľské údaje: Elsevier Ltd 01.10.2024
    “… To address this, we have developed a novel hybrid model: a reduced deep convolutional stack autoencoder with a minimum variance multikernel random vector functional link network (RDCSAE-MVMRVFLN…”
    Získať plný text
    Journal Article
  8. 8

    Non-intrusive reduced order modeling of natural convection in porous media using convolutional autoencoders: Comparison with linear subspace techniques Autor Kadeethum, T., Ballarin, F., Choi, Y., O’Malley, D., Yoon, H., Bouklas, N.

    ISSN: 0309-1708, 1872-9657
    Vydavateľské údaje: United States Elsevier Ltd 01.02.2022
    Vydané v Advances in water resources (01.02.2022)
    “…, the process of CO2 sequestration). Here, we extend and present a non-intrusive reduced order model of natural convection in porous media employing deep convolutional…”
    Získať plný text
    Journal Article
  9. 9
  10. 10

    Novel attention-based convolutional autoencoder and ConvLSTM for reduced-order modeling in fluid mechanics with time derivative architecture Autor Beiki, Alireza, Kamali, Reza

    ISSN: 0167-2789, 1872-8022
    Vydavateľské údaje: Elsevier B.V 15.11.2023
    Vydané v Physica. D (15.11.2023)
    “…To construct reduced-order models, we propose a convolutional autoencoder and a convolutional LSTM (CAE-ConvLSTM…”
    Získať plný text
    Journal Article
  11. 11

    Reduced Biquaternion Stacked Denoising Convolutional AutoEncoder for RGB-D Image Classification Autor Huang, Xiang, Gai, Shan

    ISSN: 1070-9908, 1558-2361
    Vydavateľské údaje: New York IEEE 2021
    “… To address these problems, this letter proposes a novel RGB-D image classification framework based on reduced biquaternion stacked denoising convolutional autoencoder (RQ-SDCAE…”
    Získať plný text
    Journal Article
  12. 12

    A turbulence reduced order model based on non-interpolated convolutional autoencoder Autor WU, Pin, ZHANG, Bo, SONG, Chao, ZHOU, Zhu

    ISSN: 1000-2758, 2609-7125
    Vydavateľské údaje: EDP Sciences 01.02.2025
    Vydané v Xibei Gongye Daxue Xuebao (01.02.2025)
    “… Convolutional autoencoders necessitate uniform interpolation across the flow field to attain a uniform flow field snapshot, yet this process frequently introduces interpolation errors and unwarranted temporal overheads…”
    Získať plný text
    Journal Article
  13. 13

    A turbulence reduced order model based on non-interpolated convolutional autoencoder Autor WU, Pin, ZHANG, Bo, SONG, Chao, Zhu, ZHOU

    ISSN: 1000-2758, 2609-7125
    Vydavateľské údaje: Xi'an EDP Sciences 01.02.2025
    “… Convolutional autoencoders necessitate uniform interpolation across the flow field to attain a uniform flow field snapshot, yet this process frequently introduces interpolation errors and unwarranted…”
    Získať plný text
    Journal Article
  14. 14

    A graph convolutional autoencoder approach to model order reduction for parametrized PDEs Autor Pichi, Federico, Moya, Beatriz, Hesthaven, Jan S.

    ISSN: 0021-9991, 1090-2716
    Vydavateľské údaje: Elsevier Inc 15.03.2024
    Vydané v Journal of computational physics (15.03.2024)
    “…The present work proposes a framework for nonlinear model order reduction based on a Graph Convolutional Autoencoder (GCA-ROM…”
    Získať plný text
    Journal Article
  15. 15

    Convolutional Autoencoders for Reduced-Order Modeling Autor Sreeram Venkat, Smith, Ralph C, Kelley, Carl T

    ISSN: 2331-8422
    Vydavateľské údaje: Ithaca Cornell University Library, arXiv.org 27.08.2021
    Vydané v arXiv.org (27.08.2021)
    “… and are often problem-specific \citep[see][]{carlberg_ca}. Here, we utilize randomized training data to create and train convolutional autoencoders that perform nonlinear dimension reduction for the wave and Kuramoto-Shivasinsky equations…”
    Získať plný text
    Paper
  16. 16

    Attention-based Convolutional Autoencoders for 3D-Variational Data Assimilation Autor Mack, Julian, Arcucci, Rossella, Molina-Solana, Miguel, Guo, Yi-Ke

    ISSN: 0045-7825, 1879-2138
    Vydavateľské údaje: Elsevier B.V 01.12.2020
    “…We propose a new ‘Bi-Reduced Space’ approach to solving 3D Variational Data Assimilation using Convolutional Autoencoders…”
    Získať plný text
    Journal Article
  17. 17

    Reduced-order modeling for stochastic large-scale and time-dependent flow problems using deep spatial and temporal convolutional autoencoders Autor Abdedou, Azzedine, Soulaimani, Azzeddine

    ISSN: 2213-7467, 2213-7467
    Vydavateľské údaje: Cham Springer International Publishing 19.05.2023
    “…A non-intrusive reduced-order model based on convolutional autoencoders is proposed as a data-driven tool to build an efficient nonlinear reduced-order model for stochastic spatiotemporal large-scale flow problems…”
    Získať plný text
    Journal Article
  18. 18
  19. 19

    Data-driven non-intrusive reduced order modelling of selective laser melting additive manufacturing process using proper orthogonal decomposition and convolutional autoencoder Autor Chaudhry, Shubham, Abdedou, Azzedine, Soulaïmani, Azzeddine

    ISSN: 2213-7467, 2213-7467
    Vydavateľské údaje: Cham Springer International Publishing 01.12.2025
    “…) and a convolutional autoencoder-multilayer perceptron (CAE-MLP). The POD-ANN model utilizes proper orthogonal decomposition to create a reduced-order model, which is then…”
    Získať plný text
    Journal Article
  20. 20

    Non-linear manifold ROM with Convolutional Autoencoders and Reduced Over-Collocation method Autor Romor, Francesco, Stabile, Giovanni, Rozza, Gianluigi

    ISSN: 2331-8422
    Vydavateľské údaje: Ithaca Cornell University Library, arXiv.org 01.03.2022
    Vydané v arXiv.org (01.03.2022)
    “… reduced-order models based on linear subspace approximations. Among the possible solutions, there are purely data-driven methods that leverage autoencoders…”
    Získať plný text
    Paper