Výsledky vyhľadávania - Model-constrained autoencoder

  1. 1

    TAEN: a model-constrained Tikhonov autoencoder network for forward and inverse problems Autor Van Nguyen, Hai, Bui-Thanh, Tan, Dawson, Clint

    ISSN: 0045-7825
    Vydavateľské údaje: Elsevier B.V 01.11.2025
    “… We propose a novel model-constrained Tikhonov autoencoder neural network framework, called TAEN, capable of learning both forward and inverse surrogate models using a single arbitrary observational sample…”
    Získať plný text
    Journal Article
  2. 2

    TAE: A Model-Constrained Tikhonov Autoencoder Approach for Forward and Inverse Problems Autor Nguyen, Hai V, Bui-Thanh, Tan

    ISSN: 2331-8422
    Vydavateľské údaje: Ithaca Cornell University Library, arXiv.org 09.12.2024
    Vydané v arXiv.org (09.12.2024)
    “… We propose a novel Tikhonov autoencoder model-constrained framework, called TAE, capable of learning both forward and inverse surrogate models using a single arbitrary observation sample…”
    Získať plný text
    Paper
  3. 3

    Enhanced Autoencoders With Attention-Embedded Degradation Learning for Unsupervised Hyperspectral Image Super-Resolution Autor Gao, Lianru, Li, Jiaxin, Zheng, Ke, Jia, Xiuping

    ISSN: 0196-2892, 1558-0644
    Vydavateľské údaje: New York IEEE 2023
    “…) to realize MS-aided HS-SR. First, two coupled autoencoders serve as the backbone of EU2ADL network to simultaneously decompose input modalities into abundances and corresponding endmembers, whose encoder part is composed…”
    Získať plný text
    Journal Article
  4. 4

    Selecting Observationally Constrained Global Climate Model Ensembles Using Autoencoders and Transfer Learning Autor Ibebuchi, Chibuike Chiedozie, Akinyemi, Oluwaferanmi, Abu, Itohan‐Osa

    ISSN: 2993-5210, 2993-5210
    Vydavateľské údaje: Wiley 01.03.2025
    “… In this study, we present a novel approach utilizing autoencoder neural networks (AEs) combined with transfer learning to evaluate the representation of monthly sea level pressure (SLP…”
    Získať plný text
    Journal Article
  5. 5

    Embedding Consensus Autoencoder for Cross-modal Semantic Analysis Autor Sun, Sheng-Zi, Guo, Bing-Hui, Yang, Xiao-Bo

    ISSN: 1002-137X
    Vydavateľské údaje: Chongqing Guojia Kexue Jishu Bu 01.01.2021
    Vydané v Ji suan ji ke xue (01.01.2021)
    “… data.In this work, an Embedding Consensus Autoencoder for Cross-Modal Semantic Analysis is proposed, which maps the original data to a low-dimensional shared space to retain semantic…”
    Získať plný text
    Journal Article
  6. 6

    Dictionary trained attention constrained low rank and sparse autoencoder for hyperspectral anomaly detection Autor Hu, Xing, Li, Zhixuan, Luo, Lingkun, Karimi, Hamid Reza, Zhang, Dawei

    ISSN: 0893-6080, 1879-2782, 1879-2782
    Vydavateľské údaje: United States Elsevier Ltd 01.01.2025
    Vydané v Neural networks (01.01.2025)
    “…•Proposing an attention constrained low-rank and sparse autoencoder for hyperspectral anomaly detection…”
    Získať plný text
    Journal Article
  7. 7

    Generative adversarial network constrained multiple loss autoencoder: A deep learning‐based individual atrophy detection for Alzheimer's disease and mild cognitive impairment Autor Shi, Rong, Sheng, Can, Jin, Shichen, Zhang, Qi, Zhang, Shuoyan, Zhang, Liang, Ding, Changchang, Wang, Luyao, Wang, Lei, Han, Ying, Jiang, Jiehui

    ISSN: 1065-9471, 1097-0193, 1097-0193
    Vydavateľské údaje: Hoboken, USA John Wiley & Sons, Inc 15.02.2023
    Vydané v Human brain mapping (15.02.2023)
    “… Here, we proposed a framework called generative adversarial network constrained multiple loss autoencoder (GANCMLAE…”
    Získať plný text
    Journal Article
  8. 8

    TCL: Time-Dependent Clustering Loss for Optimizing Post-Training Feature Map Quantization for Partitioned DNNs Autor Berg, Oscar Artur Bernd, Saqib, Eiraj, Jantsch, Axel, Shallari, Irida, Krug, Silvia, Sanchez Leal, Isaac, O'Nils, Mattias

    ISSN: 2169-3536, 2169-3536
    Vydavateľské údaje: Piscataway IEEE 2025
    Vydané v IEEE access (2025)
    “…This paper introduces an enhanced approach for deploying deep learning models on resource-constrained IoT devices by combining model partitioning, autoencoder-based compression, quantization with Time…”
    Získať plný text
    Journal Article
  9. 9

    Physics-constrained scheme for outlier removal in wind turbine SCADA data for power curve modeling Autor Hong, Hoang Si, Hue, Nguyen Thi, Ninh, Nguyen Tuan, Thuan, Nguyen Duc, Huong, Nguyen Thi Lan

    ISSN: 0378-7796
    Vydavateľské údaje: Elsevier B.V 01.11.2025
    Vydané v Electric power systems research (01.11.2025)
    “…•The approach integrates density-based clustering and a physics-constrained autoencoder.•A physics-constrained loss function is employed to enhance model reliability and interpretability…”
    Získať plný text
    Journal Article
  10. 10

    Quantized autoencoder (QAE) intrusion detection system for anomaly detection in resource-constrained IoT devices using RT-IoT2022 dataset Autor Sharmila, B S, Nagapadma, Rohini

    ISSN: 2523-3246, 2523-3246
    Vydavateľské údaje: Singapore Springer Nature Singapore 01.12.2023
    Vydané v Cybersecurity (Singapore) (01.12.2023)
    “… The deployment of the unsupervised autoencoder model is computationally expensive in resource-constrained edge devices…”
    Získať plný text
    Journal Article
  11. 11

    Real-time temperature anomaly detection in vaccine refrigeration systems using deep learning on a resource-constrained microcontroller Autor Harrabi, Mokhtar, Hamdi, Abdelaziz, Ouni, Bouraoui, Bel Hadj Tahar, Jamel

    ISSN: 2624-8212, 2624-8212
    Vydavateľské údaje: Switzerland Frontiers Media S.A 01.08.2024
    Vydané v Frontiers in artificial intelligence (01.08.2024)
    “… Our system utilizes a semi-supervised Convolutional Autoencoder (CAE) model deployed on a resource-constrained ESP32 microcontroller…”
    Získať plný text
    Journal Article
  12. 12

    Day-to-day dynamic origin–destination flow estimation using connected vehicle trajectories and automatic vehicle identification data Autor Cao, Yumin, Tang, Keshuang, Sun, Jian, Ji, Yangbeibei

    ISSN: 0968-090X, 1879-2359
    Vydavateľské údaje: Elsevier Ltd 01.08.2021
    “…•A novel methodology for recovering day-to-day dynamic OD flow.•Fusion of CV trajectories and AVI observations.•Obtaining prior OD flows by addressing…”
    Získať plný text
    Journal Article
  13. 13

    Channel-Wise Autoregressive Entropy Models for Learned Image Compression Autor Minnen, David, Singh, Saurabh

    ISSN: 2381-8549
    Vydavateľské údaje: IEEE 01.10.2020
    “… Currently, the most effective learned image codecs take the form of an entropy-constrained autoencoder with an entropy model that uses both forward and backward adaptation…”
    Získať plný text
    Konferenčný príspevok..
  14. 14

    Hierarchical Constrained Variational Autoencoder for interaction-sparse recommendations Autor Li, Nuo, Guo, Bin, Liu, Yan, Ding, Yasan, Yao, Lina, Fan, Xiaopeng, Yu, Zhiwen

    ISSN: 0306-4573, 1873-5371
    Vydavateľské údaje: Elsevier Ltd 01.05.2024
    Vydané v Information processing & management (01.05.2024)
    “… hybrid (Variational Autoencoder) VAE method reports the optimal performance with the advantages of non-linear modeling and comprehensive integration…”
    Získať plný text
    Journal Article
  15. 15

    A novel constrained dense convolutional autoencoder and DNN-based semi-supervised method for shield machine tunnel geological formation recognition Autor Yu, Honggan, Tao, Jianfeng, Qin, Chengjin, Liu, Mingyang, Xiao, Dengyu, Sun, Hao, Liu, Chengliang

    ISSN: 0888-3270, 1096-1216
    Vydavateľské údaje: Berlin Elsevier Ltd 15.02.2022
    “…•A machine parameter selection scheme for the shield machine is put forward.•A novel semi-supervised framework for recognizing geological conditions is…”
    Získať plný text
    Journal Article
  16. 16

    An unsupervised region of interest extraction model for tau PET images and its application in the diagnosis of Alzheimer's disease Autor Shi, Rong, Wang, Luyao, Jiang, Jiehui

    ISSN: 2694-0604, 2694-0604
    Vydavateľské údaje: IEEE 01.01.2022
    “… In this study, we proposed a novel deep learning model; called generative adversarial networks constrained multiple loss autoencoder for tau (GANCMLAE4TAU…”
    Získať plný text
    Konferenčný príspevok.. Journal Article
  17. 17

    Constrained generative model applied to face detection Autor Feraud, Raphael, Bernier, Olivier, Collobert, Daniel

    ISSN: 1370-4621
    Vydavateľské údaje: 1997
    Vydané v Neural processing letters (1997)
    “…A generative neural network model, constrained by non-face examples chosen by an iterative algorithm, is applied to face detection…”
    Získať plný text
    Journal Article
  18. 18

    Industrial Process Soft Sensing Based on Bidirectional Optimization Learning of Data Augmentation and Prediction Models Under Limited Data Autor Li, He, Wang, Zhaojing, Li, Li, Yan, Xiaoyun, Hu, Xinrong, Li, Lijun

    ISSN: 0018-9456, 1557-9662
    Vydavateľské údaje: New York IEEE 01.01.2025
    “…). Considering that the generated samples must adhere to specific distribution characteristics and maintain the relationship between feature and target variables, a regression-constrained autoencoder (R-CAE…”
    Získať plný text
    Journal Article
  19. 19

    Parametric generative schemes with geometric constraints for encoding and synthesizing airfoils Autor Xie, Hairun, Wang, Jing, Zhang, Miao

    ISSN: 0952-1976, 1873-6769
    Vydavateľské údaje: Elsevier Ltd 01.02.2024
    “… Soft-constrained scheme: a Conditional Variational Autoencoder-based model that directly incorporates geometric constraints as part of the network. 2…”
    Získať plný text
    Journal Article
  20. 20

    Separation of Metabolites and Macromolecules for Short-TE 1H-MRSI Using Learned Component-Specific Representations Autor Li, Yahang, Wang, Zepeng, Sun, Ruoyu, Lam, Fan

    ISSN: 0278-0062, 1558-254X, 1558-254X
    Vydavateľské údaje: New York IEEE 01.04.2021
    Vydané v IEEE transactions on medical imaging (01.04.2021)
    “… Specifically, a mixed unsupervised and supervised learning-based strategy was developed to learn the metabolite and MM-specific low-dimensional representations using deep autoencoders…”
    Získať plný text
    Journal Article