Výsledky vyhľadávania - Mathematics of computing Mathematical software Mathematical software performance

Upresniť hľadanie
  1. 1

    An Input-Aware Sparse Tensor Compiler Empowered by Vectorized Acceleration Autor He, Xianhao, Wang, Haotian, Zhang, Jiapeng, Yang, Wangdong, Chronopoulos, Anthony Theodore, Li, Kenli

    Vydavateľské údaje: IEEE 22.06.2025
    “… Sparse matrix-matrix multiplication (SpMM) is a representative operator in sparse computations, whose performance is often limited by the design of sparse formats and the extent of hardware architecture optimization…”
    Získať plný text
    Konferenčný príspevok..
  2. 2

    Tackling the Matrix Multiplication Micro-Kernel Generation with Exo Autor Castello, Adrian, Bellavita, Julian, Dinh, Grace, Ikarashi, Yuka, Martinez, Hector

    ISSN: 2643-2838
    Vydavateľské údaje: IEEE 02.03.2024
    “… The GEMM is usually implemented following the GotoBLAS philosophy, which tiles the GEMM operands and uses a series of nested loops for performance improvement…”
    Získať plný text
    Konferenčný príspevok..
  3. 3

    SSpMV: A Sparsity-aware SpMV Framework Empowered by Multimodal Machine Learning Autor Lin, Shengle, Liu, Chubo, Ding, Yan, Zhou, Joey Tianyi, Li, Kenli, Yang, Wangdong

    Vydavateľské údaje: IEEE 22.06.2025
    “…Sparse Matrix-Vector Multiplication (SpMV) is an essential sparse operation in scientific computing and artificial intelligence…”
    Získať plný text
    Konferenčný príspevok..
  4. 4

    pSyncPIM: Partially Synchronous Execution of Sparse Matrix Operations for All-Bank PIM Architectures Autor Baek, Daehyeon, Hwang, Soojin, Huh, Jaehyuk

    Vydavateľské údaje: IEEE 29.06.2024
    “…Recent commercial incarnations of processing-in-memory (PIM) maintain the standard DRAM interface and employ the all-bank mode execution to maximize bank-level…”
    Získať plný text
    Konferenčný príspevok..
  5. 5

    ReSMiPS: A ReRAM-based Sparse Mixed-precision Solver with Fast Matrix Reordering Algorithm Autor Fu, Yuyang, Li, Jiancong, Chen, Jia, Zhou, Zhiwei, Zhou, Houji, Peng, Wenlong, Li, Yi, Miao, Xiangshui

    Vydavateľské údaje: IEEE 22.06.2025
    “…The solution of sparse matrix equations is essential in scientific computing. However, traditional solvers on digital computing platforms are limited by memory bottlenecks in largescale sparse matrix storage and computation…”
    Získať plný text
    Konferenčný príspevok..
  6. 6

    JITSPMM: Just-in-Time Instruction Generation for Accelerated Sparse Matrix-Matrix Multiplication Autor Fu, Qiang, Rolinger, Thomas B., Huang, H. Howie

    ISSN: 2643-2838
    Vydavateľské údaje: IEEE 02.03.2024
    “…Achieving high performance for Sparse Matrix-Matrix Multiplication (SpMM) has received increasing research attention, especially on multi-core CPUs, due to the large input data size in applications such as graph neural networks (GNNs…”
    Získať plný text
    Konferenčný príspevok..
  7. 7

    Pipirima: Predicting Patterns in Sparsity to Accelerate Matrix Algebra Autor Bakhtiar, Ubaid, Joo, Donghyeon, Asgari, Bahar

    Vydavateľské údaje: IEEE 22.06.2025
    “…; a performance bottleneck. To solve such challenges, our key insight is that if while reading/streaming compressed sparse matrices we can quickly anticipate the locations of the non-zero values in a sparse matrix…”
    Získať plný text
    Konferenčný príspevok..
  8. 8

    SpV8: Pursuing Optimal Vectorization and Regular Computation Pattern in SpMV Autor Li, Chenyang, Xia, Tian, Zhao, Wenzhe, Zheng, Nanning, Ren, Pengju

    Vydavateľské údaje: IEEE 05.12.2021
    “…Sparse Matrix-Vector Multiplication (SpMV) plays an important role in many scientific and industry applications, and remains a well-known challenge due to the…”
    Získať plný text
    Konferenčný príspevok..
  9. 9

    InnerSP: A Memory Efficient Sparse Matrix Multiplication Accelerator with Locality-Aware Inner Product Processing Autor Baek, Daehyeon, Hwang, Soojin, Heo, Taekyung, Kim, Daehoon, Huh, Jaehyuk

    Vydavateľské údaje: IEEE 01.09.2021
    “…Sparse matrix multiplication is one of the key computational kernels in large-scale data analytics. However, a naive implementation suffers from the overheads…”
    Získať plný text
    Konferenčný príspevok..
  10. 10

    FeKAN: Efficient Kolmogorov-Arnold Networks Accelerator Using FeFET-based CAM and LUT Autor Yu, Xuliang, Qian, Yu, Yin, Xunzhao, Zhuo, Cheng, Zhao, Liang

    Vydavateľské údaje: IEEE 22.06.2025
    “… First, we develop a software-hardware co-optimized framework for mapping B-spline basis functions (BBF…”
    Získať plný text
    Konferenčný príspevok..
  11. 11
  12. 12

    A Tensor Algebra Compiler for Sparse Differentiation Autor Shaikhha, Amir, Huot, Mathieu, Hashemian, Shideh

    ISSN: 2643-2838
    Vydavateľské údaje: IEEE 02.03.2024
    “… with AD-agnostic domain-specific optimizations followed by efficient C++ code generation. We showcase the effectiveness of our framework in terms of performance…”
    Získať plný text
    Konferenčný príspevok..
  13. 13

    Finding the Pareto Frontier of Low-Precision Data Formats and MAC Architecture for LLM Inference Autor Crafton, Brian, Peng, Xiaochen, Sun, Xiaoyu, Lele, Ashwin, Zhang, Bo, Khwa, Win-San, Akarvardar, Kerem

    Vydavateľské údaje: IEEE 22.06.2025
    “…To accelerate AI applications, numerous data formats and physical implementations of matrix multiplication have been proposed, creating a complex design space…”
    Získať plný text
    Konferenčný príspevok..
  14. 14

    Seer: Predictive Runtime Kernel Selection for Irregular Problems Autor Swann, Ryan, Osama, Muhammad, Sangaiah, Karthik, Mahmud, Jalal

    ISSN: 2643-2838
    Vydavateľské údaje: IEEE 02.03.2024
    “…Modern GPUs are designed for regular problems and suffer from load imbalance when processing irregular data. Prior to our work, a domain expert selects the…”
    Získať plný text
    Konferenčný príspevok..
  15. 15

    Optimized Polynomial Multiplier Architectures for Post-Quantum KEM Saber Autor Basso, Andrea, Roy, Sujoy Sinha

    Vydavateľské údaje: IEEE 05.12.2021
    “… A significant portion of Saber's computation time is spent on computing polynomial multiplications in polynomial rings with powers-of-two moduli…”
    Získať plný text
    Konferenčný príspevok..
  16. 16

    SFLU: Synchronization-Free Sparse LU Factorization for Fast Circuit Simulation on GPUs Autor Zhao, Jianqi, Wen, Yao, Luo, Yuchen, Jin, Zhou, Liu, Weifeng, Zhou, Zhenya

    Vydavateľské údaje: IEEE 05.12.2021
    “…Sparse LU factorization is one of the key building blocks of sparse direct solvers and often dominates the computing time of circuit simulation programs…”
    Získať plný text
    Konferenčný príspevok..
  17. 17

    Generating Portable High-Performance Code via Multi-Dimensional Homomorphisms Autor Rasch, Ari, Schulze, Richard, Gorlatch, Sergei

    ISSN: 2641-7936
    Vydavateľské údaje: IEEE 01.09.2019
    “…We address a key challenge in programming high-performance applications - achieving portable performance, i.e…”
    Získať plný text
    Konferenčný príspevok..
  18. 18

    SpMMPlu: A Compiler Plug-in with Sparse IR for Efficient Sparse Matrix Multiplication Autor Yang, Tao, Zhou, Yiyuan, Tang, Qidong, Xu, Feng, Ma, Hui, Zhao, Jieru, Jiang, Li

    Vydavateľské údaje: IEEE 09.07.2023
    “…Sparsity is becoming arguably the most critical dimension to explore for efficiency and scalability as deep learning models grow significantly larger…”
    Získať plný text
    Konferenčný príspevok..
  19. 19

    A data locality-aware design framework for reconfigurable sparse matrix-vector multiplication kernel Autor Sicheng Li, Yandan Wang, Wujie Wen, Yu Wang, Yiran Chen, Hai Li

    ISSN: 1558-2434
    Vydavateľské údaje: ACM 01.11.2016
    “… For performance improvement, software libraries designated for SpMV computation have been introduced, e.g…”
    Získať plný text
    Konferenčný príspevok..
  20. 20

    Sparso: Context-driven optimizations of sparse linear algebra Autor Hongbo Rong, Jongsoo Park, Lingxiang Xiang, Anderson, Todd A., Smelyanskiy, Mikhail

    Vydavateľské údaje: ACM 01.09.2016
    “…The sparse matrix is a key data structure in various domains such as high-performance computing, machine learning, and graph analytics…”
    Získať plný text
    Konferenčný príspevok..