Výsledky vyhľadávania - ML: Learning on the Edge & Model Compression

  1. 1

    A comprehensive review of model compression techniques in machine learning Autor Dantas, Pierre Vilar, Sabino da Silva, Waldir, Cordeiro, Lucas Carvalho, Carvalho, Celso Barbosa

    ISSN: 0924-669X, 1573-7497
    Vydavateľské údaje: New York Springer US 01.11.2024
    “…This paper critically examines model compression techniques within the machine learning (ML…”
    Získať plný text
    Journal Article
  2. 2

    A Comprehensive Review and a Taxonomy of Edge Machine Learning: Requirements, Paradigms, and Techniques Autor Li, Wenbin, Hacid, Hakim, Almazrouei, Ebtesam, Debbah, Merouane

    ISSN: 2673-2688, 2673-2688
    Vydavateľské údaje: Basel MDPI AG 01.09.2023
    Vydané v AI (Basel) (01.09.2023)
    “… and adapted in technologies such as data processing, model compression, distributed inference, and advanced learning paradigms for Edge ML requirements…”
    Získať plný text
    Journal Article
  3. 3

    FedComp: A Federated Learning Compression Framework for Resource-Constrained Edge Computing Devices Autor Wu, Donglei, Yang, Weihao, Jin, Haoyu, Zou, Xiangyu, Xia, Wen, Fang, Binxing

    ISSN: 0278-0070, 1937-4151
    Vydavateľské údaje: New York IEEE 01.01.2024
    “…Top-K sparsification-based compression techniques are popular and powerful for reducing communication costs in federated learning (FL…”
    Získať plný text
    Journal Article
  4. 4

    Machine Learning for Microcontroller-Class Hardware - A Review Autor Saha, Swapnil Sayan, Sandha, Sandeep Singh, Srivastava, Mani

    ISSN: 1530-437X, 1558-1748
    Vydavateľské údaje: United States IEEE 15.11.2022
    Vydané v IEEE sensors journal (15.11.2022)
    “… We characterize a closed-loop widely applicable workflow of machine learning model development for microcontroller class devices and show that several classes of applications adopt a specific instance…”
    Získať plný text
    Journal Article
  5. 5

    Efficient Acceleration of Deep Learning Inference on Resource-Constrained Edge Devices: A Review Autor Shuvo, Md. Maruf Hossain, Islam, Syed Kamrul, Cheng, Jianlin, Morshed, Bashir I.

    ISSN: 0018-9219, 1558-2256
    Vydavateľské údaje: New York IEEE 01.01.2023
    Vydané v Proceedings of the IEEE (01.01.2023)
    “… However, deploying these highly accurate models for data-driven, learned, automatic, and practical machine learning (ML…”
    Získať plný text
    Journal Article
  6. 6

    Power Efficient Machine Learning Models Deployment on Edge IoT Devices Autor Fanariotis, Anastasios, Orphanoudakis, Theofanis, Kotrotsios, Konstantinos, Fotopoulos, Vassilis, Keramidas, George, Karkazis, Panagiotis

    ISSN: 1424-8220, 1424-8220
    Vydavateľské údaje: Switzerland MDPI AG 01.02.2023
    Vydané v Sensors (Basel, Switzerland) (01.02.2023)
    “… This change has been achieved by incorporating small embedded devices into a larger computational system, connected through networking and referred to as edge devices…”
    Získať plný text
    Journal Article
  7. 7

    Communication-Efficient Federated Learning for Wireless Edge Intelligence in IoT Autor Mills, Jed, Hu, Jia, Min, Geyong

    ISSN: 2327-4662, 2327-4662
    Vydavateľské údaje: Piscataway IEEE 01.07.2020
    Vydané v IEEE internet of things journal (01.07.2020)
    “…The rapidly expanding number of Internet of Things (IoT) devices is generating huge quantities of data, but public concern over data privacy means users are apprehensive to send data to a central server for machine learning (ML) purposes…”
    Získať plný text
    Journal Article
  8. 8

    When Climate Meets Machine Learning: Edge to Cloud ML Energy Efficiency Autor Marculescu, Diana

    Vydavateľské údaje: IEEE 26.07.2021
    “…A large portion of current cloud and edge workloads feature Machine Learning (ML) tasks, thereby requiring a deep understanding of their energy efficiency…”
    Získať plný text
    Konferenčný príspevok..
  9. 9

    Privacy-Preserving Federated Learning With Resource-Adaptive Compression for Edge Devices Autor Hidayat, Muhammad Ayat, Nakamura, Yugo, Arakawa, Yutaka

    ISSN: 2327-4662, 2327-4662
    Vydavateľské údaje: Piscataway IEEE 15.04.2024
    Vydané v IEEE internet of things journal (15.04.2024)
    “…Federated learning (FL) has gained widespread attention as a distributed machine learning (ML…”
    Získať plný text
    Journal Article
  10. 10

    Towards edge computing in intelligent manufacturing: Past, present and future Autor Nain, Garima, Pattanaik, K.K., Sharma, G.K.

    ISSN: 0278-6125
    Vydavateľské údaje: Elsevier Ltd 01.01.2022
    Vydané v Journal of manufacturing systems (01.01.2022)
    “… It drives the convergence of several cutting-edge technologies to provoke autonomous, fully integrated, collaborated, highly automated, and customized industries. Edge Computing (EC…”
    Získať plný text
    Journal Article
  11. 11

    Combinative model compression approach for enhancing 1D CNN efficiency for EIT-based Hand Gesture Recognition on IoT edge devices Autor Mnif, Mahdi, Sahnoun, Salwa, Ben Saad, Yasmine, Fakhfakh, Ahmed, Kanoun, Olfa

    ISSN: 2542-6605, 2542-6605
    Vydavateľské údaje: Elsevier B.V 01.12.2024
    “…Tiny Machine Learning is rapidly evolving in edge computing and intelligent Internet of Things (IoT) devices…”
    Získať plný text
    Journal Article
  12. 12

    Efficient Resource-Constrained Federated Learning Clustering with Local Data Compression on the Edge-to-Cloud Continuum Autor Prigent, Cedric, Chelli, Melvin, Costan, Alexandru, Cudennec, Loic, Schubotz, Rene, Antoniu, Gabriel

    ISSN: 2640-0316
    Vydavateľské údaje: IEEE 18.12.2024
    “… While it can be a highly efficient tool for large-scale collaborative training of Machine Learning (ML…”
    Získať plný text
    Konferenčný príspevok..
  13. 13

    Edge-Enhanced QoS Aware Compression Learning for Sustainable Data Stream Analytics Autor Amaizu, Maryleen Uluaku, Ali, Muhammad, Anjum, Ashiq, Liu, Lu, Liotta, Antonio, Rana, Omer

    ISSN: 2377-3782, 2377-3790
    Vydavateľské údaje: Piscataway IEEE 01.07.2023
    “… However, Machine Learning (ML) algorithms typically require significant computational resources, hence cannot be directly deployed on resource-constrained edge devices for learning and analytics…”
    Získať plný text
    Journal Article
  14. 14

    Tuning DNN Model Compression to Resource and Data Availability in Cooperative Training Autor Malandrino, Francesco, di Giacomo, Giuseppe, Karamzade, Armin, Levorato, Marco, Chiasserini, Carla Fabiana

    ISSN: 1063-6692, 1558-2566
    Vydavateľské údaje: New York IEEE 01.04.2024
    Vydané v IEEE/ACM transactions on networking (01.04.2024)
    “…Model compression is a fundamental tool to execute machine learning (ML) tasks on the diverse set of devices populating current-and next-generation networks, thereby exploiting their resources and data…”
    Získať plný text
    Journal Article
  15. 15

    TinyML model compression: A comparative study of pruning and quantization on selected standard and custom neural networks Autor Shabir, Muhammad Yasir, Torta, Gianluca, Damiani, Ferruccio

    ISSN: 1018-4864, 1572-9451
    Vydavateľské údaje: New York Springer Nature B.V 01.12.2025
    Vydané v Telecommunication systems (01.12.2025)
    “…In Machine Learning (ML), the deployment of complex Neural Network (NN) models on memory-constrained Internet of Things (IoT…”
    Získať plný text
    Journal Article
  16. 16

    PPEFL: An Edge Federated Learning Architecture with Privacy-Preserving Mechanism Autor Liu, Zhenpeng, Gao, Zilin, Wang, Jingyi, Liu, Qiannan, Wei, Jianhang

    ISSN: 1530-8669, 1530-8677
    Vydavateľské údaje: Oxford Hindawi 2022
    “…The emergence of federal learning makes up for some shortcomings of machine learning, and its distributed machine learning paradigm can effectively solve the problem of data islands, allowing users…”
    Získať plný text
    Journal Article
  17. 17

    Joint Video Frame Scheduling and Resource Allocation for Device-Edge Collaborative Video Intelligent Analytics Autor Li, Jiayi, Chi, Xiaoyu, Wang, Hui, Su, Yi, Han, Shujun, Xu, Xiaodong

    ISSN: 1558-2612
    Vydavateľské údaje: IEEE 24.03.2025
    “… Specifically, we propose a joint optimization scheme for video frame scheduling, adaptive video frame compression and Machine Learning (ML…”
    Získať plný text
    Konferenčný príspevok..
  18. 18

    HiRISE: High-Resolution Image Scaling for Edge ML via In-Sensor Compression and Selective ROI Autor Reidy, Brendan, Tabrizchi, Sepehr, Mohammadi, Mohamadreza, Angizi, Shaahin, Roohi, Arman, Zand, Ramtin

    ISSN: 2331-8422
    Vydavateľské údaje: Ithaca Cornell University Library, arXiv.org 23.07.2024
    Vydané v arXiv.org (23.07.2024)
    “…With the rise of tiny IoT devices powered by machine learning (ML), many researchers have directed their focus toward compressing models to fit on tiny edge devices…”
    Získať plný text
    Paper
  19. 19

    Performance Benchmarking of ML Models for Resource Constrained Devices Autor S, Sreeraj, D, Harikrishnan

    Vydavateľské údaje: IEEE 09.01.2025
    “… This study underscores the importance of model compression and optimization techniques to enable the deployment of sophisticated models in resource constrained devices…”
    Získať plný text
    Konferenčný príspevok..
  20. 20

    Compressing and Fine-tuning DNNs for Efficient Inference in Mobile Device-Edge Continuum Autor Singh, Gurtaj, Chukhno, Olga, Campolo, Claudia, Molinaro, Antonella, Chiasserini, Carla Fabiana

    Vydavateľské údaje: IEEE 08.07.2024
    “… (hence, model complexity) and latency and energy consumption. In this work, we explore the different options for the deployment of a machine learning pipeline…”
    Získať plný text
    Konferenčný príspevok..