Výsledky vyhľadávania - Inference from stochastic processes and prediction

Upresniť hľadanie
  1. 1

    Causal inference for multivariate stochastic process prediction Autor Cabuz, Simona, Abreu, Giuseppe

    ISSN: 0020-0255, 1872-6291
    Vydavateľské údaje: Elsevier Inc 01.06.2018
    Vydané v Information sciences (01.06.2018)
    “…Numerous real world systems of major interest are modeled as sets of analog continuous stochastic processes with delayed and varying causal relationships…”
    Získať plný text
    Journal Article
  2. 2

    Causal inference for multivariate stochastic process prediction Autor Simona Maria Cabuz, Giuseppe Abreu

    ISSN: 0020-0255
    Vydavateľské údaje: Elsevier BV 01.06.2018
    Vydané v Information Sciences (01.06.2018)
    Získať plný text
    Journal Article
  3. 3

    Multivariate Stochastic Rayleigh Process: Computational Aspects, Statistical Inference, Estimation and Prediction Analysis Autor Chakroune, Yassine, El Azri, Abdenbi, Nafidi, Ahmed, Makroz, Ilyasse

    ISSN: 1387-5841, 1573-7713
    Vydavateľské údaje: New York Springer US 01.12.2025
    “…The main aim of this paper is to introduce a new multivariate stochastic Rayleigh diffusion process as an extension of the univariate stochastic Rayleigh model, which has been the subject of much…”
    Získať plný text
    Journal Article
  4. 4

    Time series : theory and methods Autor Brockwell, P. J. (Peter J.), Davis, R. A. (Richard A.)

    ISBN: 1441903194, 9781441903198, 0387974296, 9781441904003, 9780387974293, 144190400X
    ISSN: 0172-7397
    Vydavateľské údaje: New York, NY Springer 2006
    “…This paperback edition is a reprint of the 1991 edition. Time Series: Theory and Methods is a systematic account of linear time series models and their application to the modeling and prediction of data collected sequentially in time…”
    Získať plný text
    E-kniha Kniha
  5. 5

    Bayesian analysis of stochastic process models Autor Ríos Insua, David, Ruggeri, Fabrizio, Wiper, Michael P.

    ISBN: 0470744537, 9780470744536, 047097592X, 9780470975923, 1118304039, 9781118304037, 0470975911, 9780470975916
    Vydavateľské údaje: Chichester, West Sussex, U.K Wiley 2012
    “… * Looks at inference, prediction and decision making. Researchers, graduate and advanced undergraduate students interested in stochastic processes in fields such as statistics, operations research…”
    Získať plný text
    E-kniha Kniha
  6. 6

    Robust Two-Step Wavelet-Based Inference for Time Series Models Autor Guerrier, Stéphane, Molinari, Roberto, Victoria-Feser, Maria-Pia, Xu, Haotian

    ISSN: 0162-1459, 1537-274X, 1537-274X
    Vydavateľské údaje: United States Taylor & Francis 02.10.2022
    “…Latent time series models such as (the independent sum of) ARMA(p, q) models with additional stochastic processes are increasingly used for data analysis in biology, ecology, engineering, and economics…”
    Získať plný text
    Journal Article
  7. 7

    An artificial neural network supported stochastic process for degradation modeling and prediction Autor Liu, Di, Wang, Shaoping

    ISSN: 0951-8320, 1879-0836
    Vydavateľské údaje: Barking Elsevier Ltd 01.10.2021
    “…•The process parameters are updated by Bayesian inference for online prediction.•Without path information the ANN supported stochastic process is still practical…”
    Získať plný text
    Journal Article
  8. 8

    Multifidelity multilevel Monte Carlo to accelerate approximate Bayesian parameter inference for partially observed stochastic processes Autor Warne, David J., Prescott, Thomas P., Baker, Ruth E., Simpson, Matthew J.

    ISSN: 0021-9991, 1090-2716
    Vydavateľské údaje: Cambridge Elsevier Inc 15.11.2022
    Vydané v Journal of computational physics (15.11.2022)
    “…Models of stochastic processes are widely used in almost all fields of science. Theory validation, parameter estimation, and prediction all require model calibration and statistical inference using data…”
    Získať plný text
    Journal Article
  9. 9

    Bayesian LSTM With Stochastic Variational Inference for Estimating Model Uncertainty in Process‐Based Hydrological Models Autor Li, Dayang, Marshall, Lucy, Liang, Zhongmin, Sharma, Ashish, Zhou, Yan

    ISSN: 0043-1397, 1944-7973
    Vydavateľské údaje: Washington John Wiley & Sons, Inc 01.09.2021
    Vydané v Water resources research (01.09.2021)
    “… Here, we introduce an alternative to Bayesian MCMC sampling called stochastic variational inference (SVI…”
    Získať plný text
    Journal Article
  10. 10

    Leapfrog Diffusion Model for Stochastic Trajectory Prediction Autor Mao, Weibo, Xu, Chenxin, Zhu, Qi, Chen, Siheng, Wang, Yanfeng

    ISSN: 1063-6919
    Vydavateľské údaje: IEEE 01.06.2023
    “…To model the indeterminacy of human behaviors, stochastic trajectory prediction requires a sophisticated multi-modal distribution of future trajectories…”
    Získať plný text
    Konferenčný príspevok..
  11. 11

    Inference and prediction for stochastic models of biological populations undergoing migration and proliferation Autor Simpson, Matthew J, Plank, Michael J

    ISSN: 1742-5662, 1742-5662
    Vydavateľské údaje: England 01.10.2025
    “…Parameter inference is a critical step in the process of interpreting biological data using mathematical models…”
    Zistit podrobnosti o prístupe
    Journal Article
  12. 12

    Effluent trading planning and its application in water quality management: A factor-interaction perspective Autor Zhang, J.L., Li, Y.P., Zeng, X.T., Huang, G.H., Li, Y., Zhu, Y., Kong, F.L., Xi, M., Liu, J.

    ISSN: 0013-9351, 1096-0953, 1096-0953
    Vydavateľské údaje: Netherlands Elsevier Inc 01.01.2019
    Vydané v Environmental research (01.01.2019)
    “… Bayesian inference is employed for uncertainty analysis of SWAT model parameters and uncertain prediction of nutrient loadings…”
    Získať plný text
    Journal Article
  13. 13

    Data-driven method for real-time prediction and uncertainty quantification of fatigue failure under stochastic loading using artificial neural networks and Gaussian process regression Autor Farid, Maor

    ISSN: 0142-1123, 1879-3452
    Vydavateľské údaje: Kidlington Elsevier Ltd 01.02.2022
    Vydané v International journal of fatigue (01.02.2022)
    “…•The current manuscript focuses on a data-driven method for real-time fatigue failure prediction under stochastic loadings…”
    Získať plný text
    Journal Article
  14. 14
  15. 15

    Collaborative Online RUL Prediction of Multiple Assets With Analytically Recursive Bayesian Inference Autor Peng, Weiwen, Chen, Yuan, Xu, Ancha, Ye, Zhi-Sheng

    ISSN: 0018-9529, 1558-1721
    Vydavateľské údaje: New York IEEE 01.03.2024
    Vydané v IEEE transactions on reliability (01.03.2024)
    “…) prediction adopt a stochastic process-based degradation model and a computation-intensive parameter estimation method for RUL prediction of a single operating asset…”
    Získať plný text
    Journal Article
  16. 16

    Deep Bayesian stochastic process model for remaining useful life prediction of rolling bearings Autor Deng, Minqiang, Xu, Meng, Bian, Wenbin, Liu, Dongying, Deng, Aidong

    ISSN: 0018-9456, 1557-9662
    Vydavateľské údaje: IEEE 19.11.2025
    “…The stochastic process model (SPM) offers a promising approach for remaining useful life (RUL…”
    Získať plný text
    Journal Article
  17. 17

    Heterogeneous Hypergraph Variational Autoencoder for Link Prediction Autor Fan, Haoyi, Zhang, Fengbin, Wei, Yuxuan, Li, Zuoyong, Zou, Changqing, Gao, Yue, Dai, Qionghai

    ISSN: 0162-8828, 1939-3539, 2160-9292, 1939-3539
    Vydavateľské údaje: United States IEEE 01.08.2022
    “…Link prediction aims at inferring missing links or predicting future ones based on the currently observed network…”
    Získať plný text
    Journal Article
  18. 18

    High‐Frequency Instruments and Identification‐Robust Inference for Stochastic Volatility Models Autor Ahsan, Md. Nazmul, Dufour, Jean‐Marie

    ISSN: 0143-9782, 1467-9892
    Vydavateľské údaje: Oxford, UK John Wiley & Sons, Ltd 01.03.2025
    Vydané v Journal of time series analysis (01.03.2025)
    “… We study parameter inference problems in the proposed framework with nonstationary stochastic volatility and exogenous predictors in the latent volatility process. Identification…”
    Získať plný text
    Journal Article
  19. 19

    Scalable Semisupervised GMM for Big Data Quality Prediction in Multimode Processes Autor Yao, Le, Ge, Zhiqiang

    ISSN: 0278-0046, 1557-9948
    Vydavateľské údaje: New York IEEE 01.05.2019
    “…In this paper, a novel variational inference semisupervised Gaussian mixture model (VI-S 2 GMM…”
    Získať plný text
    Journal Article
  20. 20

    Amortized Bayesian inference on generative dynamical network models of epilepsy using deep neural density estimators Autor Hashemi, Meysam, Vattikonda, Anirudh N., Jha, Jayant, Sip, Viktor, Woodman, Marmaduke M., Bartolomei, Fabrice, Jirsa, Viktor K.

    ISSN: 0893-6080, 1879-2782, 1879-2782
    Vydavateľské údaje: United States Elsevier Ltd 01.06.2023
    Vydané v Neural networks (01.06.2023)
    “… Such a parametric simulator is equipped with a stochastic generative process, which itself provides the basis for inference and prediction of the local and global brain dynamics affected by disorders…”
    Získať plný text
    Journal Article