Výsledky vyhľadávania - Hydrological Modeling using Machine Learning Methods
-
1
Hydrodynamic Investigation of Laguna Lake, Philippines for Water Security and Flood Risk Management of Metro Manila
ISSN: 2199-899XVydavateľské údaje: Copernicus GmbH 19.04.2024Vydané v Proceedings of IAHS (19.04.2024)Získať plný text
Journal Article -
2
Long short-term memory models of water quality in inland water environments
ISSN: 2589-9147, 2589-9147Vydavateľské údaje: Elsevier BV 01.12.2023Vydané v Water Research X (01.12.2023)Získať plný text
Journal Article -
3
Comparative study on the calculation methods of ecological base flow in a mountainous river
ISSN: 2296-665XVydavateľské údaje: Frontiers Media SA 04.08.2022Vydané v Frontiers in Environmental Science (04.08.2022)Získať plný text
Journal Article -
4
A Sustainable Early Warning System Using Rolling Forecasts Based on ANN and Golden Ratio Optimization Methods to Accurately Predict Real-Time Water Levels and Flash Flood
ISSN: 1424-8220Vydavateľské údaje: MDPI AG 05.07.2021Vydané v Sensors (05.07.2021)Získať plný text
Journal Article -
5
The importance of artificial intelligence-based methods in precipitation modeling studies: a bibliometric analysis
ISSN: 0177-798X, 1434-4483Vydavateľské údaje: Vienna Springer Vienna 01.11.2025Vydané v Theoretical and applied climatology (01.11.2025)“… In this context, using Artificial Intelligence (AI), Artificial Neural Networks (ANN), Machine Learning (ML), and Deep Learning…”
Získať plný text
Journal Article -
6
Modeling and interpreting hydrological responses of sustainable urban drainage systems with explainable machine learning methods
ISSN: 1607-7938, 1027-5606, 1607-7938Vydavateľské údaje: Katlenburg-Lindau Copernicus GmbH 11.11.2021Vydané v Hydrology and earth system sciences (11.11.2021)“… This study thus proposes a machine learning (ML) method to directly learn the statistical correlations between the hydrological responses of SuDS and the forcing variables at sub-hourly timescales from observation data…”
Získať plný text
Journal Article -
7
Challenges in Applying Machine Learning Models for Hydrological Inference: A Case Study for Flooding Events Across Germany
ISSN: 0043-1397, 1944-7973Vydavateľské údaje: Washington John Wiley & Sons, Inc 01.05.2020Vydané v Water resources research (01.05.2020)“…Machine learning (ML) algorithms are being increasingly used in Earth and Environmental modeling studies owing to the ever…”
Získať plný text
Journal Article -
8
Learning Regionalization Using Accurate Spatial Cost Gradients Within a Differentiable High‐Resolution Hydrological Model: Application to the French Mediterranean Region
ISSN: 0043-1397, 1944-7973Vydavateľské údaje: Washington John Wiley & Sons, Inc 01.11.2024Vydané v Water resources research (01.11.2024)“…Estimating spatially distributed hydrological parameters in ungauged catchments poses a challenging regionalization problem and requires imposing spatial constraints given the sparsity of discharge data…”
Získať plný text
Journal Article -
9
Towards Interpretable Physical‐Conceptual Catchment‐Scale Hydrological Modeling Using the Mass‐Conserving‐Perceptron
ISSN: 0043-1397, 1944-7973Vydavateľské údaje: Washington John Wiley & Sons, Inc 01.10.2024Vydané v Water resources research (01.10.2024)“…We investigate the applicability of machine learning technologies to the development of parsimonious, interpretable, catchment…”
Získať plný text
Journal Article -
10
AI4Water v1.0: an open-source python package for modeling hydrological time series using data-driven methods
ISSN: 1991-9603, 1991-959X, 1991-962X, 1991-9603, 1991-962X, 1991-959XVydavateľské údaje: Katlenburg-Lindau Copernicus GmbH 08.04.2022Vydané v Geoscientific Model Development (08.04.2022)“… advanced skills from diverse fields, such as programming and hydrological modeling. Additionally, data pre-processing and post-processing when training and testing machine learning models are a time-intensive process…”
Získať plný text
Journal Article -
11
Assessing climate change and human impacts on runoff and hydrological droughts in the Yellow River Basin using a machine learning-enhanced hydrological modeling approach
ISSN: 0301-4797, 1095-8630, 1095-8630Vydavateľské údaje: England Elsevier Ltd 01.04.2025Vydané v Journal of environmental management (01.04.2025)“…Analyzing the impacts of climate change (CC) and human activities (HA) on hydrological events is important for water resource management…”
Získať plný text
Journal Article -
12
Flash Flood Susceptibility Modeling Using New Approaches of Hybrid and Ensemble Tree-Based Machine Learning Algorithms
ISSN: 2072-4292, 2072-4292Vydavateľské údaje: Basel MDPI AG 31.10.2020Vydané v Remote sensing (Basel, Switzerland) (31.10.2020)“… Thus, to detect flash flood-prone zones in this study area, five machine learning (ML) algorithms were tested…”
Získať plný text
Journal Article -
13
Effect of environmental covariable selection in the hydrological modeling using machine learning models to predict daily streamflow
ISSN: 0301-4797, 1095-8630, 1095-8630Vydavateľské údaje: England Elsevier Ltd 15.07.2021Vydané v Journal of environmental management (15.07.2021)“…There are different methods for predicting streamflow, and, recently machine learning has been widely used for this purpose…”
Získať plný text
Journal Article -
14
Assessing future hydrological and sediment transport response of an urban watershed using a machine learning–based land cover change model
ISSN: 1573-2959, 0167-6369, 1573-2959Vydavateľské údaje: Cham Springer International Publishing 13.10.2025Vydané v Environmental monitoring and assessment (13.10.2025)“… Modeling LCC using machine learning techniques enhances the ability to generate realistic future scenarios, providing a robust basis for informed watershed management decisions…”
Získať plný text
Journal Article -
15
Modeling Hydrological Responses of Watershed Under Climate Change Scenarios Using Machine Learning Techniques
ISSN: 0920-4741, 1573-1650Vydavateľské údaje: Dordrecht Springer Netherlands 01.10.2023Vydané v Water resources management (01.10.2023)“… The main methods were using the Coupled Model Intercomparison Project phase 6 (CMIP6), the Soil and Water Assessment Tool (SWAT…”
Získať plný text
Journal Article -
16
Improving the spatial resolution of GRACE-based groundwater storage estimates using a machine learning algorithm and hydrological model
ISSN: 1431-2174, 1435-0157Vydavateľské údaje: Berlin/Heidelberg Springer Berlin Heidelberg 01.05.2022Vydané v Hydrogeology journal (01.05.2022)“…The low-resolution characteristic of Gravity Recovery and Climate Experiment (GRACE) satellite data greatly limits their application in many fields at regional…”
Získať plný text
Journal Article -
17
Regionalization of hydrological model parameters using gradient boosting machine
ISSN: 1607-7938, 1027-5606, 1607-7938Vydavateľské údaje: Katlenburg-Lindau Copernicus GmbH 31.01.2022Vydané v Hydrology and earth system sciences (31.01.2022)“…The regionalization of hydrological model parameters is key to hydrological predictions in ungauged basins…”
Získať plný text
Journal Article -
18
Evaluation of Machine Learning Techniques for Hydrological Drought Modeling: A Case Study of the Wadi Ouahrane Basin in Algeria
ISSN: 2073-4441, 2073-4441Vydavateľské údaje: Basel MDPI AG 01.02.2022Vydané v Water (Basel) (01.02.2022)“… In this study, various machine learning (ML) techniques including four methods (i.e., ANN, ANFIS, SVM, and DT…”
Získať plný text
Journal Article -
19
Exploring the Controlling Factors of Watershed Streamflow Variability Using Hydrological and Machine Learning Models
ISSN: 0043-1397, 1944-7973Vydavateľské údaje: Washington John Wiley & Sons, Inc 01.05.2025Vydané v Water resources research (01.05.2025)“… This study demonstrated the potential of integrating hydrological models with machine learning by constructing two machine learning methods, Extreme Gradient Boosting (XGBoost) and Random Forest (RF…”
Získať plný text
Journal Article -
20
Hybridization of stochastic hydrological models and machine learning methods for improving rainfall-runoff modeling
ISSN: 2590-1230, 2590-1230Vydavateľské údaje: Elsevier B.V 01.03.2025Vydané v Results in engineering (01.03.2025)“…Accurately simulating river discharge remains a challenge. Hybrid models combining hydrological models with machine learning improve discharge simulation and offer better interpretability than standalone machine learning models…”
Získať plný text
Journal Article