Výsledky vyhľadávania - Hydrological Modeling using Machine Learning Methods

  1. 1
  2. 2
  3. 3
  4. 4
  5. 5

    The importance of artificial intelligence-based methods in precipitation modeling studies: a bibliometric analysis Autor Aydin, Olgu, Kilar, Hatice

    ISSN: 0177-798X, 1434-4483
    Vydavateľské údaje: Vienna Springer Vienna 01.11.2025
    Vydané v Theoretical and applied climatology (01.11.2025)
    “… In this context, using Artificial Intelligence (AI), Artificial Neural Networks (ANN), Machine Learning (ML), and Deep Learning…”
    Získať plný text
    Journal Article
  6. 6

    Modeling and interpreting hydrological responses of sustainable urban drainage systems with explainable machine learning methods Autor Yang, Yang, Chui, Ting Fong May

    ISSN: 1607-7938, 1027-5606, 1607-7938
    Vydavateľské údaje: Katlenburg-Lindau Copernicus GmbH 11.11.2021
    Vydané v Hydrology and earth system sciences (11.11.2021)
    “… This study thus proposes a machine learning (ML) method to directly learn the statistical correlations between the hydrological responses of SuDS and the forcing variables at sub-hourly timescales from observation data…”
    Získať plný text
    Journal Article
  7. 7

    Challenges in Applying Machine Learning Models for Hydrological Inference: A Case Study for Flooding Events Across Germany Autor Schmidt, Lennart, Heße, Falk, Attinger, Sabine, Kumar, Rohini

    ISSN: 0043-1397, 1944-7973
    Vydavateľské údaje: Washington John Wiley & Sons, Inc 01.05.2020
    Vydané v Water resources research (01.05.2020)
    “…Machine learning (ML) algorithms are being increasingly used in Earth and Environmental modeling studies owing to the ever…”
    Získať plný text
    Journal Article
  8. 8

    Learning Regionalization Using Accurate Spatial Cost Gradients Within a Differentiable High‐Resolution Hydrological Model: Application to the French Mediterranean Region Autor Huynh, Ngo Nghi Truyen, Garambois, Pierre‐André, Colleoni, François, Renard, Benjamin, Roux, Hélène, Demargne, Julie, Jay‐Allemand, Maxime, Javelle, Pierre

    ISSN: 0043-1397, 1944-7973
    Vydavateľské údaje: Washington John Wiley & Sons, Inc 01.11.2024
    Vydané v Water resources research (01.11.2024)
    “…Estimating spatially distributed hydrological parameters in ungauged catchments poses a challenging regionalization problem and requires imposing spatial constraints given the sparsity of discharge data…”
    Získať plný text
    Journal Article
  9. 9

    Towards Interpretable Physical‐Conceptual Catchment‐Scale Hydrological Modeling Using the Mass‐Conserving‐Perceptron Autor Wang, Yuan‐Heng, Gupta, Hoshin V.

    ISSN: 0043-1397, 1944-7973
    Vydavateľské údaje: Washington John Wiley & Sons, Inc 01.10.2024
    Vydané v Water resources research (01.10.2024)
    “…We investigate the applicability of machine learning technologies to the development of parsimonious, interpretable, catchment…”
    Získať plný text
    Journal Article
  10. 10

    AI4Water v1.0: an open-source python package for modeling hydrological time series using data-driven methods Autor Abbas, Ather, Boithias, Laurie, Pachepsky, Yakov, Kim, Kyunghyun, Chun, Jong Ahn, Cho, Kyung Hwa

    ISSN: 1991-9603, 1991-959X, 1991-962X, 1991-9603, 1991-962X, 1991-959X
    Vydavateľské údaje: Katlenburg-Lindau Copernicus GmbH 08.04.2022
    Vydané v Geoscientific Model Development (08.04.2022)
    “… advanced skills from diverse fields, such as programming and hydrological modeling. Additionally, data pre-processing and post-processing when training and testing machine learning models are a time-intensive process…”
    Získať plný text
    Journal Article
  11. 11

    Assessing climate change and human impacts on runoff and hydrological droughts in the Yellow River Basin using a machine learning-enhanced hydrological modeling approach Autor Wang, Lei, Li, Yi, Biswas, Asim, Zhao, Yong, Niu, Ben, Siddique, Kadambot.H.M.

    ISSN: 0301-4797, 1095-8630, 1095-8630
    Vydavateľské údaje: England Elsevier Ltd 01.04.2025
    Vydané v Journal of environmental management (01.04.2025)
    “…Analyzing the impacts of climate change (CC) and human activities (HA) on hydrological events is important for water resource management…”
    Získať plný text
    Journal Article
  12. 12

    Flash Flood Susceptibility Modeling Using New Approaches of Hybrid and Ensemble Tree-Based Machine Learning Algorithms Autor Band, Shahab S., Janizadeh, Saeid, Chandra Pal, Subodh, Saha, Asish, Chakrabortty, Rabin, Melesse, Assefa M., Mosavi, Amirhosein

    ISSN: 2072-4292, 2072-4292
    Vydavateľské údaje: Basel MDPI AG 31.10.2020
    Vydané v Remote sensing (Basel, Switzerland) (31.10.2020)
    “… Thus, to detect flash flood-prone zones in this study area, five machine learning (ML) algorithms were tested…”
    Získať plný text
    Journal Article
  13. 13

    Effect of environmental covariable selection in the hydrological modeling using machine learning models to predict daily streamflow Autor Reis, Guilherme Barbosa, da Silva, Demetrius David, Fernandes Filho, Elpídio Inácio, Moreira, Michel Castro, Veloso, Gustavo Vieira, Fraga, Micael de Souza, Pinheiro, Sávio Augusto Rocha

    ISSN: 0301-4797, 1095-8630, 1095-8630
    Vydavateľské údaje: England Elsevier Ltd 15.07.2021
    Vydané v Journal of environmental management (15.07.2021)
    “…There are different methods for predicting streamflow, and, recently machine learning has been widely used for this purpose…”
    Získať plný text
    Journal Article
  14. 14

    Assessing future hydrological and sediment transport response of an urban watershed using a machine learning–based land cover change model Autor Peker, İsmail Bilal, Cuceloglu, Gokhan, Sökmen, Eren Dağra, Gülbaz, Sezar

    ISSN: 1573-2959, 0167-6369, 1573-2959
    Vydavateľské údaje: Cham Springer International Publishing 13.10.2025
    “… Modeling LCC using machine learning techniques enhances the ability to generate realistic future scenarios, providing a robust basis for informed watershed management decisions…”
    Získať plný text
    Journal Article
  15. 15

    Modeling Hydrological Responses of Watershed Under Climate Change Scenarios Using Machine Learning Techniques Autor Karimizadeh, Keivan, Yi, Jaeeung

    ISSN: 0920-4741, 1573-1650
    Vydavateľské údaje: Dordrecht Springer Netherlands 01.10.2023
    Vydané v Water resources management (01.10.2023)
    “… The main methods were using the Coupled Model Intercomparison Project phase 6 (CMIP6), the Soil and Water Assessment Tool (SWAT…”
    Získať plný text
    Journal Article
  16. 16

    Improving the spatial resolution of GRACE-based groundwater storage estimates using a machine learning algorithm and hydrological model Autor Yin, Wenjie, Zhang, Gangqiang, Liu, Futian, Zhang, Dasheng, Zhang, Xiuping, Chen, Sheming

    ISSN: 1431-2174, 1435-0157
    Vydavateľské údaje: Berlin/Heidelberg Springer Berlin Heidelberg 01.05.2022
    Vydané v Hydrogeology journal (01.05.2022)
    “…The low-resolution characteristic of Gravity Recovery and Climate Experiment (GRACE) satellite data greatly limits their application in many fields at regional…”
    Získať plný text
    Journal Article
  17. 17

    Regionalization of hydrological model parameters using gradient boosting machine Autor Song, Zhihong, Xia, Jun, Wang, Gangsheng, She, Dunxian, Hu, Chen, Hong, Si

    ISSN: 1607-7938, 1027-5606, 1607-7938
    Vydavateľské údaje: Katlenburg-Lindau Copernicus GmbH 31.01.2022
    Vydané v Hydrology and earth system sciences (31.01.2022)
    “…The regionalization of hydrological model parameters is key to hydrological predictions in ungauged basins…”
    Získať plný text
    Journal Article
  18. 18

    Evaluation of Machine Learning Techniques for Hydrological Drought Modeling: A Case Study of the Wadi Ouahrane Basin in Algeria Autor Achite, Mohammed, Jehanzaib, Muhammad, Elshaboury, Nehal, Kim, Tae-Woong

    ISSN: 2073-4441, 2073-4441
    Vydavateľské údaje: Basel MDPI AG 01.02.2022
    Vydané v Water (Basel) (01.02.2022)
    “… In this study, various machine learning (ML) techniques including four methods (i.e., ANN, ANFIS, SVM, and DT…”
    Získať plný text
    Journal Article
  19. 19

    Exploring the Controlling Factors of Watershed Streamflow Variability Using Hydrological and Machine Learning Models Autor Ding, Bingbing, Yu, Xinxiao, Jia, Guodong

    ISSN: 0043-1397, 1944-7973
    Vydavateľské údaje: Washington John Wiley & Sons, Inc 01.05.2025
    Vydané v Water resources research (01.05.2025)
    “… This study demonstrated the potential of integrating hydrological models with machine learning by constructing two machine learning methods, Extreme Gradient Boosting (XGBoost) and Random Forest (RF…”
    Získať plný text
    Journal Article
  20. 20

    Hybridization of stochastic hydrological models and machine learning methods for improving rainfall-runoff modeling Autor Houénafa, Sianou Ezéckiel, Johnson, Olatunji, Ronoh, Erick K., Moore, Stephen E.

    ISSN: 2590-1230, 2590-1230
    Vydavateľské údaje: Elsevier B.V 01.03.2025
    Vydané v Results in engineering (01.03.2025)
    “…Accurately simulating river discharge remains a challenge. Hybrid models combining hydrological models with machine learning improve discharge simulation and offer better interpretability than standalone machine learning models…”
    Získať plný text
    Journal Article