Výsledky vyhľadávania - Hybrid forecasting algorithm of cooling load
-
1
Forecasting performance comparison of two hybrid machine learning models for cooling load of a large-scale commercial building
ISSN: 2352-7102, 2352-7102Vydavateľské údaje: Elsevier Ltd 01.01.2019Vydané v Journal of Building Engineering (01.01.2019)“…The hourly cooling load forecasting of a commercial building is very hard to be guaranteed with high accuracy…”
Získať plný text
Journal Article -
2
Hybrid forecasting model of building cooling load based on EMD-LSTM-Markov algorithm
ISSN: 0378-7788Vydavateľské údaje: Elsevier B.V 15.10.2024Vydané v Energy and buildings (15.10.2024)“…Precise forecasting of the cooling load (CL) of buildings is crucial for the efficient functioning of central air conditioning systems…”
Získať plný text
Journal Article -
3
Cooling Load Forecasting Based On Hybrid Machine-Learning Application With Integration Of Meta-heuristic Algorithm
ISSN: 2708-9967Vydavateľské údaje: 淡江大學 01.01.2025Vydané v 淡江理工學刊 (01.01.2025)“… This research presents hybrid machine learning models integrated with advanced optimization techniques tailored for accurately predicting Cooling Load in buildings…”
Získať plný text
Journal Article -
4
A hybrid forecasting method for cooling load in large public buildings based on improved long short term memory
ISSN: 2352-7102, 2352-7102Vydavateľské údaje: Elsevier Ltd 01.10.2023Vydané v Journal of Building Engineering (01.10.2023)“… In order to improve the operational efficiency of the air conditioning system, it is crucial to establish an accurate and effective cooling load forecasting model…”
Získať plný text
Journal Article -
5
A hybrid method of cooling load forecasting for large commercial building based on extreme learning machine
ISSN: 0360-5442, 1873-6785Vydavateľské údaje: Oxford Elsevier Ltd 01.01.2022Vydané v Energy (Oxford) (01.01.2022)“…Air conditioning system is extensively used in large commercial buildings. The fast and accurate building cooling load forecasting is the basis for improving…”
Získať plný text
Journal Article -
6
Hybrid forecasting model of building cooling load based on combined neural network
ISSN: 0360-5442Vydavateľské údaje: Elsevier Ltd 15.06.2024Vydané v Energy (Oxford) (15.06.2024)“…) and long short-term memory neural network (BAS-LSTM) optimized by beetle antennae search algorithm is proposed for building cooling load prediction…”
Získať plný text
Journal Article -
7
Proposing hybrid prediction approaches with the integration of machine learning models and metaheuristic algorithms to forecast the cooling and heating load of buildings
ISSN: 0360-5442Vydavateľské údaje: Elsevier Ltd 15.03.2024Vydané v Energy (Oxford) (15.03.2024)“…Accurate prediction of heating and cooling loads in residential buildings is crucial for both researchers and practitioners…”
Získať plný text
Journal Article -
8
A hybrid prediction model of improved bidirectional long short-term memory network for cooling load based on PCANet and attention mechanism
ISSN: 0360-5442Vydavateľské údaje: Elsevier Ltd 01.04.2024Vydané v Energy (Oxford) (01.04.2024)“…Accurate and reliable cooling load forecasting is a prerequisite for air-conditioning system control and the basis for building-side energy management…”
Získať plný text
Journal Article -
9
Intelligent Load Forecasting for Central Air Conditioning Using an Optimized Hybrid Deep Learning Framework
ISSN: 1996-1073, 1996-1073Vydavateľské údaje: Basel MDPI AG 01.11.2025Vydané v Energies (Basel) (01.11.2025)“… To address these issues, this study proposes a novel hybrid forecasting model termed IWOA-BiTCN-BiGRU-SA, which integrates the Improved Whale Optimization Algorithm (IWOA…”
Získať plný text
Journal Article -
10
Multiple Load Forecasting of Integrated Energy System Based on Sequential-Parallel Hybrid Ensemble Learning
ISSN: 1996-1073, 1996-1073Vydavateľské údaje: Basel MDPI AG 01.04.2023Vydané v Energies (Basel) (01.04.2023)“… In order to simultaneously reduce the prediction bias and variance, a hybrid ensemble learning method for load forecasting of an integrated energy system combining sequential ensemble learning…”
Získať plný text
Journal Article -
11
Deep belief network based ensemble approach for cooling load forecasting of air-conditioning system
ISSN: 0360-5442, 1873-6785Vydavateľské údaje: Oxford Elsevier Ltd 01.04.2018Vydané v Energy (Oxford) (01.04.2018)“… Therefore, a novel deep learning based hybrid approach is originally proposed in this paper for deterministic cooling load forecasting with high accuracy…”
Získať plný text
Journal Article -
12
Advanced forecasting of building energy loads with XGBoost and metaheuristic algorithms integration
ISSN: 2772-6835, 2772-6835Vydavateľské údaje: 01.08.2025Vydané v Energy Storage and Saving (01.08.2025)Získať plný text
Journal Article -
13
Hybrid prediction model for cold load in large public buildings based on mean residual feedback and improved SVR
ISSN: 0378-7788Vydavateľské údaje: Elsevier B.V 01.09.2023Vydané v Energy and buildings (01.09.2023)“…•TGRF is proposed for mean residual feedback to improve the model accuracy.•SSA is improved using three strategies to enhance the algorithm performance…”
Získať plný text
Journal Article -
14
Multi-Energy Load Prediction Method for Integrated Energy System Based on Fennec Fox Optimization Algorithm and Hybrid Kernel Extreme Learning Machine
ISSN: 1099-4300, 1099-4300Vydavateľské údaje: Switzerland MDPI AG 17.08.2024Vydané v Entropy (Basel, Switzerland) (17.08.2024)“… the difficulty of forecasting. Therefore, this article puts forward a multi-energy load prediction approach of the IES, which combines the fennec fox optimization algorithm (FFA…”
Získať plný text
Journal Article -
15
Research on cooling load estimation through optimal hybrid models based on Naive Bayes
ISSN: 1110-1903, 2536-9512Vydavateľské údaje: Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2024Vydané v Journal of engineering and applied science (Online) (01.12.2024)“… Traditional methods simplify real-world complexities, highlighting artificial intelligence’s role in precise cooling load forecasting for energy-efficient building management…”
Získať plný text
Journal Article -
16
Research on ultra-short-term load forecasting method of oil and gas field integrated energy system based on hybrid neural network
ISSN: 0948-7921, 1432-0487Vydavateľské údaje: Berlin/Heidelberg Springer Berlin Heidelberg 01.10.2025Vydané v Electrical engineering (01.10.2025)“…Aiming at the source-network-load coordination requirements of distributed new energy and cooling, heating and electricity loads in oil and gas fields, this paper proposes an ultra-short-term load…”
Získať plný text
Journal Article -
17
Forecasting heating and cooling loads of buildings: a comparative performance analysis
ISSN: 1868-5137, 1868-5145Vydavateľské údaje: Berlin/Heidelberg Springer Berlin Heidelberg 01.03.2020Vydané v Journal of ambient intelligence and humanized computing (01.03.2020)“…Heating load and cooling load forecasting are crucial for estimating energy consumption and improvement of energy performance during the design phase of buildings…”
Získať plný text
Journal Article -
18
Meta-learning strategy based on user preferences and a machine recommendation system for real-time cooling load and COP forecasting
ISSN: 0306-2619, 1872-9118Vydavateľské údaje: Elsevier Ltd 15.07.2020Vydané v Applied energy (15.07.2020)“… (subjective and objective) user preferences.•Multi-objective decision making algorithms (MODMA) are used in option optimization…”
Získať plný text
Journal Article -
19
Dynamic forecast of cooling load and energy saving potential based on Ensemble Kalman Filter for an institutional high-rise building with hybrid ventilation
ISSN: 1996-3599, 1996-8744Vydavateľské údaje: Beijing Tsinghua University Press 01.12.2020Vydané v Building simulation (01.12.2020)“…Combining natural and mechanical ventilation, hybrid ventilation is an effective approach to reduce cooling energy consumption…”
Získať plný text
Journal Article -
20
Forecasting cooling load and water demand of a semi-closed greenhouse using a hybrid modelling approach
ISSN: 0143-0750, 2162-8246Vydavateľské údaje: Taylor & Francis 31.12.2022Vydané v International journal of ambient energy (31.12.2022)“…Forecasting the greenhouse cooling and water demand is critical for improving the performance, reducing energy consumption, and operating costs throughout the year…”
Získať plný text
Journal Article