Výsledky vyhľadávania - Heterogeneous graph autoencoder

  1. 1

    NodeHGAE: Node-oriented heterogeneous graph autoencoder Autor Zhu, Xiangkai, Li, Chao, Yan, Yeyu, Zhao, Zhongying, Duan, Hua, Zeng, Qingtian

    ISSN: 0020-0255
    Vydavateľské údaje: Elsevier Inc 01.11.2025
    Vydané v Information sciences (01.11.2025)
    “…Heterogeneous graph autoencoder (HGAE), as an unsupervised learning approach, aims to encode nodes and edges of heterogeneous graphs into low-dimensional vector representations, and simultaneously reconstruct the original graph structure…”
    Získať plný text
    Journal Article
  2. 2

    Conditional Enhanced Variational Autoencoder-Heterogeneous Graph Attention Neural Network: A Novel Fault Diagnosis Method for Electric Rudders Based on Heterogeneous Information Autor Cao, Ximing, Yang, Ruifeng, Guo, Chenxia, Qin, Hao

    ISSN: 1424-8220, 1424-8220
    Vydavateľské údaje: Switzerland MDPI AG 01.01.2024
    Vydané v Sensors (Basel, Switzerland) (01.01.2024)
    “…In machine fault diagnosis, despite the wealth of information multi-sensor data provide for constructing high-quality graphs, existing graph data-driven diagnostic methods face challenges posed…”
    Získať plný text
    Journal Article
  3. 3

    Hgae: Heterogeneous Graph Autoencoder-Based Service Bundle Recommendations for Efficient Mashup Development Autor Sun, Kaipu, Wang, Xuanye, Xi, Meng, Wu, Yangyang, Pan, Xiaohua, Zhang, Jinshan, Li, Ying, Ma, Kun, Yin, Jianwei

    ISSN: 2836-3868
    Vydavateľské údaje: IEEE 07.07.2025
    “… In this work, we propose an innovative message-passing model, a Heterogeneous Graph AutoEncoderbased service bundle recommendation model (HGAE…”
    Získať plný text
    Konferenčný príspevok..
  4. 4

    Deceptive reviewer group detection using self-adversarial variational autoencoder: a heterogeneous graph-based approach Autor Maurya, Sushil Kumar, Singh, Dinesh

    ISSN: 0219-1377, 0219-3116
    Vydavateľské údaje: London Springer London 01.11.2025
    Vydané v Knowledge and information systems (01.11.2025)
    “… by completing the user-review-product graph. To accomplish this, we propose an integrated approach comprising three key components…”
    Získať plný text
    Journal Article
  5. 5

    V-GMR: a variational autoencoder-based heterogeneous graph multi-behavior recommendation model Autor Yang, Haoqin, Rang, Ran, Xing, Linlin, Zhang, Longbo, Cai, Hongzhen, Guo, Maozu, Sun, Jiaqi

    ISSN: 0924-669X, 1573-7497
    Vydavateľské údaje: New York Springer US 01.02.2024
    “… In this paper, we propose a variational autoencoder (VAE) and graph-based heterogeneous multibehavior recommendation model (V-GMR…”
    Získať plný text
    Journal Article
  6. 6

    VHGAE: Drug-Target Interaction Prediction Model Based on Heterogeneous Graph Variational Autoencoder Autor Zhang, Chen, Sun, Jiaqi, Xing, Linlin, Zhang, Longbo, Cai, Hongzhen, Che, Kai

    ISSN: 1913-2751, 1867-1462, 1867-1462
    Vydavateľské údaje: Germany 21.08.2025
    “… the prediction performance of DTI. Therefore, we propose a method, called VHGAE, based on a heterogeneous graph variational autoencoder to predict drug-target interactions…”
    Získať plný text
    Journal Article
  7. 7

    MODAPro: Explainable Heterogeneous Networks with Variational Graph Autoencoder for Mining Disease-Specific Functional Molecules and Pathways from Omics Data Autor Zhao, Jinhui, He, Jiarui, Guan, Pengwei, Bao, Han, Zhao, Xinjie, Zhao, Chunxia, Qin, Wangshu, Lu, Xin, Xu, Guowang

    ISSN: 1520-6882, 1520-6882
    Vydavateľské údaje: United States 28.10.2025
    Vydané v Analytical chemistry (Washington) (28.10.2025)
    “… To address these critical limitations, we introduce MODAPro, a biologically informed deep learning framework that synergistically integrates variational graph autoencoders (VAE…”
    Zistit podrobnosti o prístupe
    Journal Article
  8. 8

    GIAE-DTI: Predicting Drug-Target Interactions Based on Heterogeneous Network and GIN-Based Graph Autoencoder Autor Wang, Mengdi, Lei, Xiujuan, Liu, Lian, Chen, Jianrui, Wu, Fang-Xiang

    ISSN: 2168-2194, 2168-2208, 2168-2208
    Vydavateľské údaje: United States IEEE 01.11.2025
    “…-modal similarity of drugs and targets and constructs a heterogeneous network for DTI prediction…”
    Získať plný text
    Journal Article
  9. 9

    SELECTOR: Heterogeneous graph network with convolutional masked autoencoder for multimodal robust prediction of cancer survival Autor Pan, Liangrui, Peng, Yijun, Li, Yan, Wang, Xiang, Liu, Wenjuan, Xu, Liwen, Liang, Qingchun, Peng, Shaoliang

    ISSN: 0010-4825, 1879-0534, 1879-0534
    Vydavateľské údaje: United States Elsevier Ltd 01.04.2024
    Vydané v Computers in biology and medicine (01.04.2024)
    “… This paper introduces SELECTOR, a heterogeneous graph-aware network based on convolutional mask encoders for robust multimodal prediction of cancer patient survival…”
    Získať plný text
    Journal Article
  10. 10

    GADTI: Graph Autoencoder Approach for DTI Prediction From Heterogeneous Network Autor Liu, Zhixian, Chen, Qingfeng, Lan, Wei, Pan, Haiming, Hao, Xinkun, Pan, Shirui

    ISSN: 1664-8021, 1664-8021
    Vydavateľské údaje: Switzerland Frontiers Media S.A 09.04.2021
    Vydané v Frontiers in genetics (09.04.2021)
    “… In this article, a graph autoencoder approach for DTI prediction (GADTI) was proposed to discover potential interactions between drugs and targets using a heterogeneous network, which integrates diverse drug-related and target-related datasets…”
    Získať plný text
    Journal Article
  11. 11

    Drug repositioning based on heterogeneous networks and variational graph autoencoders Autor Lei, Song, Lei, Xiujuan, Liu, Lian

    ISSN: 1663-9812, 1663-9812
    Vydavateľské údaje: Switzerland Frontiers Media S.A 21.12.2022
    Vydané v Frontiers in pharmacology (21.12.2022)
    “… years has facilitated drug development. In this study we propose a drug repositioning method, VGAEDR, based on a heterogeneous network of multiple drug attributes and a variational graph autoencoder…”
    Získať plný text
    Journal Article
  12. 12

    Predicting potential microbe-disease associations based on heterogeneous graph attention network and deep sparse autoencoder Autor Wang, Bo, Zhao, Wenlong, Du, Xiaoxin, Zhang, Jianfei, Zhang, Chunyu, Wang, Liping, He, Yang

    ISSN: 0952-1976
    Vydavateľské údaje: Elsevier Ltd 01.05.2025
    “… We propose a computational framework called graph attention convolutional deep sparse autoencoder microbe-disease association (GCDSAEMDA…”
    Získať plný text
    Journal Article
  13. 13

    AEGCN: An Autoencoder-Constrained Graph Convolutional Network Autor Ma, Mingyuan, Na, Sen, Wang, Hongyu

    ISSN: 0925-2312, 1872-8286
    Vydavateľské údaje: Elsevier B.V 07.04.2021
    Vydané v Neurocomputing (Amsterdam) (07.04.2021)
    “… We consider applying our model on both homogeneous graphs and heterogeneous graphs. For homogeneous graphs, the autoencoder approximates to the adjacency matrix…”
    Získať plný text
    Journal Article
  14. 14

    Multi-Head Graph Attention Adversarial Autoencoder Network for Unsupervised Change Detection Using Heterogeneous Remote Sensing Images Autor Jia, Meng, Lou, Xiangyu, Zhao, Zhiqiang, Lu, Xiaofeng, Shi, Zhenghao

    ISSN: 2072-4292, 2072-4292
    Vydavateľské údaje: Basel MDPI AG 24.07.2025
    Vydané v Remote sensing (Basel, Switzerland) (24.07.2025)
    “… To address this issue, we propose the Multi-Head Graph Attention Mechanism (MHGAN), designed to achieve accurate detection of surface changes in heterogeneous remote sensing images…”
    Získať plný text
    Journal Article
  15. 15

    Heterogeneous Graph Masked Autoencoders Autor Tian, Yijun, Dong, Kaiwen, Zhang, Chunhui, Zhang, Chuxu, Chawla, Nitesh V

    ISSN: 2331-8422
    Vydavateľské údaje: Ithaca Cornell University Library, arXiv.org 10.02.2023
    Vydané v arXiv.org (10.02.2023)
    “…? In light of this, we study the problem of generative SSL on heterogeneous graphs and propose HGMAE, a novel heterogeneous graph masked autoencoder model to address these challenges…”
    Získať plný text
    Paper
  16. 16

    Variational Graph Autoencoder for Heterogeneous Information Networks with Missing and Inaccurate Attributes Autor Zhao, Yige, Yu, Jianxiang, Cheng, Yao, Yu, Chengcheng, Liu, Yiding, Li, Xiang, Wang, Shuaiqiang

    ISSN: 2331-8422
    Vydavateľské údaje: Ithaca Cornell University Library, arXiv.org 19.11.2024
    Vydané v arXiv.org (19.11.2024)
    “…Heterogeneous Information Networks (HINs), which consist of various types of nodes and edges, have recently demonstrated excellent performance in graph mining…”
    Získať plný text
    Paper
  17. 17

    Exploring Microbe-Drug Association Prediction via Multi-Attribute Dual-Decoder Graph Autoencoder Autor Liu, Wei, Deng, Xiangcheng, Sun, Xingen, Lu, Xu, Chen, Xing

    ISSN: 2168-2194, 2168-2208, 2168-2208
    Vydavateľské údaje: United States IEEE 01.11.2025
    “… In this work, we propose a method called exploring microbe-drug association prediction via multi-attribute dual-decoder graph autoencoder (MDGAEMDA…”
    Získať plný text
    Journal Article
  18. 18

    Dataset Recommendation via Variational Graph Autoencoder Autor Altaf, Basmah, Akujuobi, Uchenna, Yu, Lu, Zhang, Xiangliang

    ISSN: 2374-8486
    Vydavateľské údaje: IEEE 01.11.2019
    “…This paper targets on designing a query-based dataset recommendation system, which accepts a query denoting a user's research interest as a set of research…”
    Získať plný text
    Konferenčný príspevok..
  19. 19

    GSAMDA: a computational model for predicting potential microbe–drug associations based on graph attention network and sparse autoencoder Autor Tan, Yaqin, Zou, Juan, Kuang, Linai, Wang, Xiangyi, Zeng, Bin, Zhang, Zhen, Wang, Lei

    ISSN: 1471-2105, 1471-2105
    Vydavateľské údaje: London BioMed Central 18.11.2022
    Vydané v BMC bioinformatics (18.11.2022)
    “… Results In this work, we proposed a novel computational model named GSAMDA based on the graph attention network and sparse autoencoder to infer latent microbe–drug associations…”
    Získať plný text
    Journal Article
  20. 20

    MSGCA: Drug-Disease Associations Prediction Based on Multi-Similarities Graph Convolutional Autoencoder Autor Wang, Ying, Gao, Ying-Lian, Wang, Juan, Li, Feng, Liu, Jin-Xing

    ISSN: 2168-2194, 2168-2208, 2168-2208
    Vydavateľské údaje: United States IEEE 01.07.2023
    “… Hence, a prediction method based on multi-similarities graph convolutional autoencoder (MSGCA…”
    Získať plný text
    Journal Article