Výsledky vyhľadávania - Deep learning architectures and techniques; Recognition: detection
-
1
Equalized Focal Loss for Dense Long-Tailed Object Detection
ISSN: 1063-6919Vydavateľské údaje: IEEE 01.06.2022Vydané v Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) (01.06.2022)“…Despite the recent success of long-tailed object detection, almost all long-tailed object detectors are developed based on the two-stage paradigm…”
Získať plný text
Konferenčný príspevok.. -
2
Sylph: A Hypernetwork Framework for Incremental Few-shot Object Detection
ISSN: 1063-6919Vydavateľské údaje: IEEE 01.06.2022Vydané v Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) (01.06.2022)“…We study the challenging incremental few-shot object de-tection (iFSD) setting. Recently, hypernetwork-based approaches have been studied in the context of…”
Získať plný text
Konferenčný príspevok.. -
3
A ConvNet for the 2020s
ISSN: 1063-6919Vydavateľské údaje: IEEE 01.06.2022Vydané v Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) (01.06.2022)“…The "Roaring 20s" of visual recognition began with the introduction of Vision Transformers (ViTs…”
Získať plný text
Konferenčný príspevok.. -
4
Grounded Language-Image Pre-training
ISSN: 1063-6919Vydavateľské údaje: IEEE 01.06.2022Vydané v Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) (01.06.2022)“…This paper presents a grounded language-image pretraining (GLIP) model for learning object-level, language-aware, and semantic-rich visual representations…”
Získať plný text
Konferenčný príspevok.. -
5
CSWin Transformer: A General Vision Transformer Backbone with Cross-Shaped Windows
ISSN: 1063-6919Vydavateľské údaje: IEEE 01.06.2022Vydané v Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) (01.06.2022)“…We present CSWin Transformer, an efficient and effective Transformer-based backbone for general-purpose vision tasks. A challenging issue in Transformer design…”
Získať plný text
Konferenčný príspevok.. -
6
MetaFormer is Actually What You Need for Vision
ISSN: 1063-6919Vydavateľské údaje: IEEE 01.01.2022Vydané v Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) (01.01.2022)“… Based on this observation, we hypothesize that the general architecture of the transformers, instead of the specific token mixer module, is more essential to the model's performance…”
Získať plný text
Konferenčný príspevok.. -
7
beta-DARTS: Beta-Decay Regularization for Differentiable Architecture Search
ISSN: 1063-6919Vydavateľské údaje: IEEE 01.06.2022Vydané v Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) (01.06.2022)“…Neural Architecture Search (NAS) has attracted increasingly more attention in recent years because of its capability to design deep neural network automatically…”
Získať plný text
Konferenčný príspevok.. -
8
SLIC: Self-Supervised Learning with Iterative Clustering for Human Action Videos
ISSN: 1063-6919Vydavateľské údaje: IEEE 01.06.2022Vydané v Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) (01.06.2022)“…Self-supervised methods have significantly closed the gap with end-to-end supervised learning for image classification [13], [24…”
Získať plný text
Konferenčný príspevok.. -
9
Revisiting Weakly Supervised Pre-Training of Visual Perception Models
ISSN: 1063-6919Vydavateľské údaje: IEEE 01.06.2022Vydané v Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) (01.06.2022)“…Model pre-training is a cornerstone of modern visual recognition systems. Although fully supervised pre-training on datasets like ImageNet is still the de-facto…”
Získať plný text
Konferenčný príspevok.. -
10
Multimodal Token Fusion for Vision Transformers
ISSN: 1063-6919Vydavateľské údaje: IEEE 01.06.2022Vydané v Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) (01.06.2022)“…Many adaptations of transformers have emerged to address the single-modal vision tasks, where self-attention modules are stacked to handle input sources like…”
Získať plný text
Konferenčný príspevok.. -
11
Knowledge Distillation via the Target-aware Transformer
ISSN: 1063-6919Vydavateľské údaje: IEEE 01.06.2022Vydané v Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) (01.06.2022)“… However, people tend to overlook the fact that, due to the architecture differences, the semantic information on the same spatial location usually vary…”
Získať plný text
Konferenčný príspevok.. -
12
Single-Domain Generalized Object Detection in Urban Scene via Cyclic-Disentangled Self-Distillation
ISSN: 1063-6919Vydavateľské údaje: IEEE 01.06.2022Vydané v Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) (01.06.2022)“… And we consider a realistic yet challenging scenario, namely Single-Domain Generalized Object Detection (Single-DGOD…”
Získať plný text
Konferenčný príspevok.. -
13
TransMix: Attend to Mix for Vision Transformers
ISSN: 1063-6919Vydavateľské údaje: IEEE 01.06.2022Vydané v Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) (01.06.2022)“…Mixup-based augmentation has been found to be effective for generalizing models during training, especially for Vision Transformers (ViTs) since they can…”
Získať plný text
Konferenčný príspevok.. -
14
Unbiased Teacher v2: Semi-supervised Object Detection for Anchor-free and Anchor-based Detectors
ISSN: 1063-6919Vydavateľské údaje: IEEE 01.06.2022Vydané v Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) (01.06.2022)“…With the recent development of Semi-Supervised Object Detection (SS-OD) techniques, object detectors can be improved by using a limited amount of labeled data and abundant unlabeled data…”
Získať plný text
Konferenčný príspevok.. -
15
MiniViT: Compressing Vision Transformers with Weight Multiplexing
ISSN: 1063-6919Vydavateľské údaje: IEEE 01.06.2022Vydané v Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) (01.06.2022)“…Vision Transformer (ViT) models have recently drawn much attention in computer vision due to their high model capability. However, ViT models suffer from huge…”
Získať plný text
Konferenčný príspevok.. -
16
TableFormer: Table Structure Understanding with Transformers
ISSN: 1063-6919Vydavateľské údaje: IEEE 01.06.2022Vydané v Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) (01.06.2022)“… In this paper, we present a new table-structure identification model. The latter improves the latest end-to-end deep learning model (i.e…”
Získať plný text
Konferenčný príspevok.. -
17
VISTA: Boosting 3D Object Detection via Dual Cross-VIew SpaTial Attention
ISSN: 1063-6919Vydavateľské údaje: IEEE 01.06.2022Vydané v Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) (01.06.2022)“…Detecting objects from LiDAR point clouds is of tremendous significance in autonomous driving…”
Získať plný text
Konferenčný príspevok.. -
18
Human-Object Interaction Detection via Disentangled Transformer
ISSN: 1063-6919Vydavateľské údaje: IEEE 01.06.2022Vydané v Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) (01.06.2022)“…Human-Object Interaction Detection tackles the problem of joint localization and classification of human object interactions…”
Získať plný text
Konferenčný príspevok.. -
19
Progressive End-to-End Object Detection in Crowded Scenes
ISSN: 1063-6919Vydavateľské údaje: IEEE 01.06.2022Vydané v Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) (01.06.2022)“…In this paper, we propose a new query-based detection framework for crowd detection…”
Získať plný text
Konferenčný príspevok.. -
20
DTA: Physical Camouflage Attacks using Differentiable Transformation Network
ISSN: 1063-6919Vydavateľské údaje: IEEE 01.06.2022Vydané v Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) (01.06.2022)“… In this paper, we propose the Differentiable Transformation Attack (DTA), a framework for generating a robust physical adversarial pattern on a target object to camouflage it against object detection models with a wide range of transformations…”
Získať plný text
Konferenčný príspevok..