Výsledky vyhľadávania - Classificació AMS::39 Difference and functional equations::39A Difference equations

Alternativne vyhľadávanie:

  • Zobrazené výsledky 1 - 9 z 9
Upresniť hľadanie
  1. 1

    Bifurcation of 2-periodic orbits from non-hyperbolic fixed points Autor Cima, Anna, Gasull, Armengol, Mañosa, Víctor

    ISSN: 0022-247X, 1096-0813
    Vydavateľské údaje: Elsevier Inc 01.01.2018
    “…We introduce the concept of 2-cyclicity for families of one-dimensional maps with a non-hyperbolic fixed point by analogy to the cyclicity for families of…”
    Získať plný text
    Journal Article Publikácia
  2. 2

    Boundary value problems for second order linear difference equations: application to the computation of the inverse of generalized Jacobi matrices Autor Encinas, A. M., Jiménez, M. J.

    ISSN: 1578-7303, 1579-1505
    Vydavateľské údaje: Cham Springer International Publishing 01.10.2019
    “…We have named generalized Jacobi matrices to those that are practically tridiagonal, except for the two final entries and the two first entries of its first…”
    Získať plný text
    Journal Article Publikácia
  3. 3

    Non-integrability of measure preserving maps via Lie symmetries Autor Cima, Anna, Gasull, Armengol, Mañosa, Víctor

    ISSN: 0022-0396, 1090-2732
    Vydavateľské údaje: Elsevier Inc 15.11.2015
    Vydané v Journal of Differential Equations (15.11.2015)
    “… The obtained criterion can be applied to prove the local non-integrability of the Cohen map and of several rational maps coming from second order difference equations…”
    Získať plný text
    Journal Article Publikácia
  4. 4

    Floquet theory for second order linear homogeneous difference equations Autor Encinas, A.M., Jiménez, M.J.

    ISSN: 1023-6198, 1563-5120
    Vydavateľské údaje: Abingdon Taylor & Francis 03.03.2016
    “…In this paper we provide a version of the Floquet's theorem to be applied to any second order difference equations with quasi-periodic coefficients…”
    Získať plný text
    Journal Article Publikácia
  5. 5

    Lie symmetries of birational maps preserving genus 0 fibrations Autor Llorens, Mireia, Mañosa, Víctor

    ISSN: 0022-247X, 1096-0813
    Vydavateľské údaje: Elsevier Inc 01.12.2015
    “…We prove that any planar birational integrable map, which preserves a fibration given by genus 0 curves has a Lie symmetry and some associated invariant…”
    Získať plný text
    Journal Article Publikácia
  6. 6

    Combinatorial Recurrences and Linear Difference Equations Autor Jiménez, M. José, Encinas, Andrés M.

    ISSN: 1571-0653, 1571-0653
    Vydavateľské údaje: Elsevier B.V 01.10.2016
    “…In this work we introduce the triangular arrays of depth greater than 1 given by linear recurrences, that generalize some well-known recurrences that appear in…”
    Získať plný text
    Journal Article Publikácia
  7. 7

    On 2- and 3-periodic Lyness difference equations Autor Cima, Anna, Gasull, Armengol, Mañosa, Víctor

    ISSN: 1023-6198, 1563-5120
    Vydavateľské údaje: Abingdon Taylor & Francis Group 01.05.2012
    “…We describe the sequences given by the non-autonomous second-order Lyness difference equations , where is either a 2-periodic or a 3-periodic sequence of positive values and the initial conditions are also positive…”
    Získať plný text
    Journal Article Publikácia
  8. 8

    Basin of attraction of triangular maps with applications Autor Cima, Anna, Gasull, Armengol, Mañosa, Víctor

    ISSN: 1023-6198, 1563-5120
    Vydavateľské údaje: Abingdon Taylor & Francis 04.03.2014
    “…We consider planar triangular maps . These maps preserve the fibration of the plane given by . We assume that there exists an invariant attracting fibre for…”
    Získať plný text
    Journal Article Publikácia
  9. 9

    Integrability and non-integrability of periodic non-autonomous Lyness recurrences Autor Cima, Anna, Gasull, Armengol, Mañosa, Víctor

    ISSN: 1468-9367, 1468-9375
    Vydavateľské údaje: Taylor & Francis Group 01.12.2013
    Vydané v Dynamical systems (London, England) (01.12.2013)
    “…This paper studies non-autonomous Lyness-type recurrences of the form x n+2 = (a n + x n+1 )/x n , where {a n } is a k-periodic sequence of positive numbers…”
    Získať plný text
    Journal Article Publikácia