Výsledky vyhľadávania - Applied Machine Learning for Code Assessment
-
1
A large empirical assessment of the role of data balancing in machine-learning-based code smell detection
ISSN: 0164-1212Vydavateľské údaje: Elsevier Inc 01.11.2020Vydané v The Journal of systems and software (01.11.2020)“… To overcome these limitations, previous work applied Machine-Learning that can learn from previous datasets without needing any threshold definition…”
Získať plný text
Journal Article -
2
Can we screen for pancreatic cancer? Identifying a sub-population of patients at high risk of subsequent diagnosis using machine learning techniques applied to primary care data
ISSN: 1932-6203, 1932-6203Vydavateľské údaje: United States Public Library of Science 02.06.2021Vydané v PloS one (02.06.2021)“…Pancreatic cancer (PC) represents a substantial public health burden. Pancreatic cancer patients have very low survival due to the difficulty of identifying…”
Získať plný text
Journal Article -
3
How Good Is Your Verilog RTL Code? A Quick Answer from Machine Learning
ISSN: 1558-2434Vydavateľské údaje: ACM 29.10.2022Vydané v 2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD) (29.10.2022)“…), design iterations become prohibitively expensive. To this end, we propose a machine learning approach to Verilog-based Register-Transfer Level (RTL…”
Získať plný text
Konferenčný príspevok.. -
4
QAcon: single model quality assessment using protein structural and contact information with machine learning techniques
ISSN: 1367-4803, 1367-4811Vydavateľské údaje: England Oxford University Press 15.02.2017Vydané v Bioinformatics (Oxford, England) (15.02.2017)“…Protein model quality assessment (QA) plays a very important role in protein structure prediction…”
Získať plný text
Journal Article -
5
Development of a code-free machine learning model for the classification of cataract surgery phases
ISSN: 2045-2322, 2045-2322Vydavateľské údaje: London Nature Publishing Group UK 14.02.2022Vydané v Scientific reports (14.02.2022)“…This study assessed the performance of automated machine learning (AutoML) in classifying cataract surgery phases from surgical videos…”
Získať plný text
Journal Article -
6
Development and internal-external validation of statistical and machine learning models for breast cancer prognostication: cohort study
ISSN: 1756-1833, 1756-1833Vydavateľské údaje: England British Medical Journal Publishing Group 10.05.2023Vydané v BMJ (Online) (10.05.2023)“… (self-reported female sex) with breast cancer of any stage, comparing results from regression and machine learning…”
Získať plný text
Journal Article -
7
Dense phenotyping from electronic health records enables machine learning-based prediction of preterm birth
ISSN: 1741-7015, 1741-7015Vydavateľské údaje: London BioMed Central 28.09.2022Vydané v BMC medicine (28.09.2022)“… Results We find that machine learning models based on billing codes alone can predict preterm birth risk at various gestational ages (e.g., ROC-AUC = 0.75, PR-AUC…”
Získať plný text
Journal Article -
8
A deep learning solution for real-time quality assessment and control in additive manufacturing using point cloud data
ISSN: 0956-5515, 1572-8145Vydavateľské údaje: New York Springer US 01.03.2024Vydané v Journal of intelligent manufacturing (01.03.2024)“…This work presents an in-situ quality assessment and improvement technique using point cloud and AI for data processing and smart decision making in Additive Manufacturing (AM…”
Získať plný text
Journal Article -
9
Retinal vein occlusion risk prediction without fundus examination using a no-code machine learning tool for tabular data: a nationwide cross-sectional study from South Korea
ISSN: 1472-6947, 1472-6947Vydavateľské údaje: London BioMed Central 07.03.2025Vydané v BMC medical informatics and decision making (07.03.2025)“…—are commonly utilized in clinical settings for disease risk assessment. This study aimed to develop a machine learning model to predict RVO risk in the general population…”
Získať plný text
Journal Article -
10
Machine learning-assisted distinct element model calibration: ANFIS, SVM, GPR, and MARS approaches
ISSN: 1861-1125, 1861-1133Vydavateľské údaje: Berlin/Heidelberg Springer Berlin Heidelberg 01.04.2022Vydané v Acta geotechnica (01.04.2022)“… This paper explores the use of the adaptive network-based fuzzy inference system (ANFIS), support vector machine (SVM…”
Získať plný text
Journal Article -
11
Protein-RNA interface residue prediction using machine learning: an assessment of the state of the art
ISSN: 1471-2105, 1471-2105Vydavateľské údaje: London BioMed Central 10.05.2012Vydané v BMC bioinformatics (10.05.2012)“… Understanding the molecular mechanisms by which proteins recognize and bind RNA is essential for comprehending the functional implications of these interactions, but the recognition ‘code…”
Získať plný text
Journal Article -
12
A Survey of Automatic Source Code Summarization
ISSN: 2073-8994, 2073-8994Vydavateľské údaje: Basel MDPI AG 01.03.2022Vydané v Symmetry (Basel) (01.03.2022)“…Source code summarization refers to the natural language description of the source code’s function…”
Získať plný text
Journal Article -
13
Assessment of punching shear strength of FRP-RC slab-column connections using machine learning algorithms
ISSN: 0141-0296, 1873-7323Vydavateľské údaje: Kidlington Elsevier Ltd 15.03.2022Vydané v Engineering structures (15.03.2022)“… Recently, the use of fiber-reinforced polymer (FRP) bars replacing steel reinforcement has been widely applied to overcome the corrosion issue, particularly concrete slab-column connections using FRP bars as flexural reinforcement (FRP-RC slabs…”
Získať plný text
Journal Article -
14
Seismic Impact on Building Structures: Assessment, Design, and Strengthening
ISBN: 3725813612, 9783725813612, 3725813620, 9783725813629Vydavateľské údaje: MDPI - Multidisciplinary Digital Publishing Institute 2024“… This Special Issue focuses on the structural impact of earthquakes on buildings. Original research and reviews covering structural modeling, vulnerability assessment…”
Získať plný text
E-kniha -
15
An empirical assessment of machine learning approaches for triaging reports of static analysis tools
ISSN: 1382-3256, 1573-7616Vydavateľské údaje: New York Springer US 01.03.2023Vydané v Empirical software engineering : an international journal (01.03.2023)“… To improve the usability of these tools, researchers have recently begun to apply machine learning techniques to classify and filter incorrect analysis reports…”
Získať plný text
Journal Article -
16
Application of Machine Learning for Assessment of HS Code Correctness
ISSN: 2255-8950, 2255-8942, 2255-8950Vydavateľské údaje: Riga University of Latvia 01.01.2020Vydané v Baltic Journal of Modern Computing (01.01.2020)“… The paper provides an automated solution to this problem by applying machine learning methods to assess the correctness of Harmonized System codes…”
Získať plný text
Journal Article -
17
Development and validation of ‘Patient Optimizer’ (POP) algorithms for predicting surgical risk with machine learning
ISSN: 1472-6947, 1472-6947Vydavateľské údaje: London BioMed Central 11.03.2024Vydané v BMC medical informatics and decision making (11.03.2024)“… (referred to as Patient Optimizer or POP) using Machine Learning (ML) that predict the development of post-operative complications and provide pilot data to inform the design of a larger prospective study…”
Získať plný text
Journal Article -
18
OP67 “Black Box Bottleneck” Paradigm And Transparency Issues On Artificial-Intelligence-Based Tools In Health Technology Assessment: A Scoping Review
ISSN: 0266-4623, 1471-6348Vydavateľské údaje: New York, USA Cambridge University Press 07.01.2025Vydané v International journal of technology assessment in health care (07.01.2025)Získať plný text
Journal Article -
19
Object-Oriented LULC Classification in Google Earth Engine Combining SNIC, GLCM, and Machine Learning Algorithms
ISSN: 2072-4292, 2072-4292Vydavateľské údaje: Basel MDPI AG 17.11.2020Vydané v Remote sensing (Basel, Switzerland) (17.11.2020)“… (OO) Land Use–Land Cover (LULC) classification approaches can be implemented, thanks to the availability of the many state-of-art functions comprising various Machine Learning (ML) algorithms…”
Získať plný text
Journal Article -
20
Exploiting generative self-supervised learning for the assessment of biological images with lack of annotations
ISSN: 1471-2105, 1471-2105Vydavateľské údaje: London BioMed Central 24.07.2022Vydané v BMC bioinformatics (24.07.2022)“… In this paper, we present Generative Adversarial Network Discriminator Learner (GAN-DL), a novel self-supervised learning paradigm based on the StyleGAN2 architecture…”
Získať plný text
Journal Article

