Search Results - dilated encoder–decoder ConvLSTM

  • Showing 1 - 6 results of 6
Refine Results
  1. 1

    PDED-ConvLSTM: Pyramid Dilated Deeper EncoderDecoder Convolutional LSTM for Arctic Sea Ice Concentration Prediction by Zhang, Deyu, Wang, Changying, Huang, Baoxiang, Ren, Jing, Zhao, Junli, Hou, Guojia

    ISSN: 2076-3417, 2076-3417
    Published: Basel MDPI AG 01.04.2024
    Published in Applied sciences (01.04.2024)
    “… To address these challenges, we propose an innovative encoderdecoder pyramid dilated convolutional long short-term memory network (DED-ConvLSTM…”
    Get full text
    Journal Article
  2. 2

    Multi-Scale Attention and Encoder-Decoder Network for Video Saliency Object Detection by Bi, Hongbo, Zhu, Huihui, Yang, Lina, Wu, Ranwan

    ISSN: 1054-6618, 1555-6212
    Published: Moscow Pleiades Publishing 01.06.2022
    Published in Pattern recognition and image analysis (01.06.2022)
    “…: spatial module and temporal module. In spatial module: we use a set of parallel dilated convolutions, and add channel attention to each dilated convolutions…”
    Get full text
    Journal Article
  3. 3

    Short-Term Load Forecasting Using Encoder-Decoder WaveNet: Application to the French Grid by Dorado Rueda, Fernando, Durán Suárez, Jaime, del Real Torres, Alejandro

    ISSN: 1996-1073, 1996-1073
    Published: Basel MDPI AG 01.05.2021
    Published in Energies (Basel) (01.05.2021)
    “… To this end, the authors propose an encoder-decoder architecture inspired by WaveNet, a deep generative model initially designed by Google DeepMind for raw audio waveforms…”
    Get full text
    Journal Article
  4. 4

    D2CL: A Dense Dilated Convolutional LSTM Model for Sea Surface Temperature Prediction by Hou, Siyun, Li, Wengen, Liu, Tianying, Zhou, Shuigeng, Guan, Jihong, Qin, Rufu, Wang, Zhenfeng

    ISSN: 1939-1404, 2151-1535
    Published: Piscataway IEEE 2021
    “… In this work, we proposed a novel dense dilated convolutional LSTM (D2CL) model to predict SST…”
    Get full text
    Journal Article
  5. 5

    多层次特征融合与超图卷积的生成对抗壁画修复 by 陈永, 陶美风, 赵梦雪

    ISSN: 2096-3246
    Published: 兰州交通大学 电子与信息工程学院,甘肃 兰州 730070 01.05.2024
    Published in 工程科学与技术 (01.05.2024)
    “…及门控机制融合多分支特征方法,将相邻分支间的特征信息进行融合,使融合后的壁画特征图中既有同分支的特征,又有相邻分支的特征,以提高特征信息的利用率;并引入门控机制对特征进行选择融合,以减少细节信息的丢失.接着,将融合特征通过卷积长短期记忆网络(ConvLSTM)特征注意力方法,增强对壁画上下文信息的关注.最后,设计超图卷积…”
    Get full text
    Journal Article
  6. 6

    An integrated deep learning framework for joint segmentation of blood pool and myocardium by Du, Xiuquan, Song, Yuhui, Liu, Yueguo, Zhang, Yanping, Liu, Heng, Chen, Bo, Li, Shuo

    ISSN: 1361-8415, 1361-8423, 1361-8423
    Published: Netherlands Elsevier B.V 01.05.2020
    Published in Medical image analysis (01.05.2020)
    “… such as inception module, dilated convolution, and ConvLSTM module are used to assist the residual network…”
    Get full text
    Journal Article