Suchergebnisse - vector quantized variational autoencoder (VAE)

Andere Suchmöglichkeiten:

  1. 1

    A Vector Quantized Variational Autoencoder (VQ-VAE) Autoregressive Neural F0 Model for Statistical Parametric Speech Synthesis von Wang, Xin, Takaki, Shinji, Yamagishi, Junichi, King, Simon, Tokuda, Keiichi

    ISSN: 2329-9290
    Veröffentlicht: IEEE 2020
    “… In subjective evaluations, a deep AR model (DAR) outperformed an RNN. Here, we propose a Vector Quantized Variational Autoencoder (VQ-VAE …”
    Volltext
    Journal Article
  2. 2

    Robust Semantic Communications with Masked VQ-VAE Enabled Codebook von Hu, Qiyu, Zhang, Guangyi, Qin, Zhijin, Cai, Yunlong, Yu, Guanding, Li, Geoffrey Ye

    ISSN: 1536-1276, 1558-2248
    Veröffentlicht: New York IEEE 01.12.2023
    Veröffentlicht in IEEE transactions on wireless communications (01.12.2023)
    “… Although semantic communications have exhibited satisfactory performance on a large number of tasks, the impact of semantic noise and the robustness of the …”
    Volltext
    Journal Article
  3. 3

    S2VQ-VAE: Semi-Supervised Vector Quantised-Variational AutoEncoder for Automatic Evaluation of Trail Making Test von Tang, Zeshen, Tang, Shiyu, Wang, Haoran, Li, Renren, Zhang, Xiaochen, Zhang, Wei, Yuan, Xiao, Zang, Yaning, Li, Yanping, Zhou, Tian, Li, Yunxia

    ISSN: 2168-2194, 2168-2208, 2168-2208
    Veröffentlicht: United States IEEE 01.08.2024
    Veröffentlicht in IEEE journal of biomedical and health informatics (01.08.2024)
    “… We proposed a novel deep representation learning approach named Semi-Supervised Vector Quantised-Variational AutoEncoder (S2VQ-VAE …”
    Volltext
    Journal Article
  4. 4
  5. 5

    A Vector Quantized Variational Autoencoder (VQ-VAE) Autoregressive Neural [Formula Omitted] Model for Statistical Parametric Speech Synthesis von Wang, Xin, Takaki, Shinji, Yamagishi, Junichi, King, Simon, Tokuda, Keiichi

    ISSN: 2329-9290, 2329-9304
    Veröffentlicht: Piscataway The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 01.01.2020
    “… In subjective evaluations, a deep AR model (DAR) outperformed an RNN. Here, we propose a Vector Quantized Variational Autoencoder (VQ-VAE) neural [Formula Omitted …”
    Volltext
    Journal Article
  6. 6

    SVQ-VAE: Federated-Learning-Based Semantic-Aware Communication for Vehicular Networks von Jin, Zhu, Li, Yundi, Song, Tiecheng, Jia, Wen-Kang, Song, Xiaoqin

    ISSN: 2327-4662, 2327-4662
    Veröffentlicht: Piscataway IEEE 01.12.2025
    Veröffentlicht in IEEE internet of things journal (01.12.2025)
    “… The integration of semantic communication technology into intelligent vehicular networks represents a promising research direction, as it significantly reduces …”
    Volltext
    Journal Article
  7. 7

    Entropy-Constrained VQ-VAE for Deep-Learning-Based CSI Feedback von Shin, Junyong, Park, Jinsung, Jeon, Yo-Seb

    ISSN: 0018-9545, 1939-9359
    Veröffentlicht: New York IEEE 01.06.2025
    Veröffentlicht in IEEE transactions on vehicular technology (01.06.2025)
    “… This technique harnesses an autoencoder architecture, where an encoder network transforms CSI into a low-dimensional latent vector, and a decoder network reconstructs the CSI from the latent vector …”
    Volltext
    Journal Article
  8. 8

    Predicting anatomical variations in radiotherapy with a vector quantized variational autoencoder generative model von Zou, Yue, Li, Zhenhao, Zhang, Menghan, Li, Ziwei, Yin, Xiaojie, Yang, Long, Hu, Weigang, Wang, Jiazhou

    ISSN: 0094-2405, 2473-4209, 2473-4209
    Veröffentlicht: United States 01.09.2025
    Veröffentlicht in Medical physics (Lancaster) (01.09.2025)
    “… Predicting these changes may benefit adaptive radiotherapy (ART) in nasopharyngeal cancer. Purpose This study proposes a vector quantized variational autoencoder (VQ‐VAE …”
    Volltext
    Journal Article
  9. 9

    Reviving Legacy Seismic Data via Machine Learning Technique-Part 2: Estimating 3-D Seismic Volumes From 2-D Seismic Lines With VQ-VAE von Lee, Jun-Woo, Je Lee, Min, Min, Dong-Joo, Cho, Yongchae

    ISSN: 0196-2892, 1558-0644
    Veröffentlicht: New York IEEE 2025
    “… , seismic misties and discrepant seismic characteristics across lines). To overcome these challenges, we employ the vector-quantized variational autoencoder (VQ-VAE …”
    Volltext
    Journal Article
  10. 10

    Generating extremely low-dimensional representation of subsurface earth models using vector quantization and deep Autoencoder von Yusuf Falola, Polina Churilova, Rui Liu, Chung-Kan Huang, Jose F. Delgado, Siddharth Misra

    ISSN: 2096-2495
    Veröffentlicht: KeAi Communications Co., Ltd 01.03.2025
    Veröffentlicht in Petroleum Research (01.03.2025)
    “… ), variational autoencoders …”
    Volltext
    Journal Article
  11. 11

    Vector Quantization for Deep-Learning-Based CSI Feedback in Massive MIMO Systems von Shin, Junyong, Kang, Yujin, Jeon, Yo-Seb

    ISSN: 2162-2337, 2162-2345
    Veröffentlicht: Piscataway IEEE 01.09.2024
    Veröffentlicht in IEEE wireless communications letters (01.09.2024)
    “… ) feedback method for massive multiple-input multiple-output (MIMO) systems. The presented method provides a finite-bit representation of the latent vector based on a vector-quantized variational autoencoder (VQ-VAE …”
    Volltext
    Journal Article
  12. 12

    Audio-Visual Autoencoding for Privacy-Preserving Video Streaming von Xu, Honghui, Cai, Zhipeng, Takabi, Daniel, Li, Wei

    ISSN: 2327-4662, 2327-4662
    Veröffentlicht: Piscataway IEEE 01.02.2022
    Veröffentlicht in IEEE internet of things journal (01.02.2022)
    “… In this article, we propose a cycle vector-quantized variational autoencoder (cycle-VQ-VAE) framework to encode and decode the video with its extracted audio, which takes …”
    Volltext
    Journal Article
  13. 13

    SSL-VQ: vector-quantized variational autoencoders for semi-supervised prediction of therapeutic targets across diverse diseases von Namba, Satoko, Li, Chen, Yuyama Otani, Noriko, Yamanishi, Yoshihiro

    ISSN: 1367-4811, 1367-4803, 1367-4811
    Veröffentlicht: England Oxford University Press 04.02.2025
    Veröffentlicht in Bioinformatics (Oxford, England) (04.02.2025)
    “… rare diseases, intractable diseases). Results This study presents a novel machine learning approach using multimodal vector-quantized variational autoencoders (VQ-VAEs …”
    Volltext
    Journal Article
  14. 14

    RAQ-VAE: Rate-Adaptive Vector-Quantized Variational Autoencoder von Seo, Jiwan, Kang, Joonhyuk

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 23.05.2024
    Veröffentlicht in arXiv.org (23.05.2024)
    “… Vector Quantized Variational AutoEncoder (VQ-VAE) is an established technique in machine learning for learning discrete representations across various modalities …”
    Volltext
    Paper
  15. 15

    Connectionist temporal classification loss for vector quantized variational autoencoder in zero-shot voice conversion von Kang, Xiao, Huang, Hao, Hu, Ying, Huang, Zhihua

    ISSN: 1051-2004, 1095-4333
    Veröffentlicht: Elsevier Inc 01.09.2021
    Veröffentlicht in Digital signal processing (01.09.2021)
    “… •Thorough analysis provides useful insight into representation disentangling. Vector quantized variational autoencoder (VQ-VAE …”
    Volltext
    Journal Article
  16. 16

    466.4-Gbit/s PCS-64QAM wireless transmission enhanced by dual-polarized SISO link and vector-quantized variational autoencoders von Liu, Xiang, Zhang, Jiao, Zhu, Min, Xin, Zhigang, Dong Tong, Wei, Wang, Yunwu, Cai, Yuancheng, Hua, Bingchang, Lei, Mingzheng, Liu, Bo, Yu, Jianjun

    ISSN: 1094-4087, 1094-4087
    Veröffentlicht: United States 12.08.2024
    Veröffentlicht in Optics express (12.08.2024)
    “… ) wireless delivery at 92.5 GHz. This is achieved by employing a likelihood-aware vector-quantized variational autoencoder (VQ-VAE …”
    Volltext
    Journal Article
  17. 17

    Vector-Quantized Variational AutoEncoder for pansharpening von Talbi, Farid, Chikr Elmezouar, Miloud, Boutellaa, Elhocine, Alim, Fatiha

    ISSN: 0143-1161, 1366-5901
    Veröffentlicht: London Taylor & Francis 18.10.2023
    Veröffentlicht in International journal of remote sensing (18.10.2023)
    “… This paper describes a new, efficient, and accurate pansharpening architecture. The Vector-Quantized Variational AutoEncoder (VQ-VAE …”
    Volltext
    Journal Article
  18. 18

    The Multilayer Perceptron Vector Quantized Variational AutoEncoder for Spectral Envelope Quantization von Srikotr, Tanasan, Mano, Kazunori

    ISSN: 2158-4001
    Veröffentlicht: IEEE 01.01.2020
    “… In this paper, we propose The Multilayer Perceptron Vector Quantized Variational Autoencoder (MLP-VQ-VAE) to manage the flexibility of controlling the number of z-latent vectors to quantize and embedding space size efficiently …”
    Volltext
    Tagungsbericht
  19. 19

    Data augmentation with generative models improves detection of Non-B DNA structures von Cherednichenko, Oleksandr, Poptsova, Maria

    ISSN: 0010-4825, 1879-0534, 1879-0534
    Veröffentlicht: United States Elsevier Ltd 01.01.2025
    Veröffentlicht in Computers in biology and medicine (01.01.2025)
    “… Non-B DNA structures, or flipons, are important functional elements that regulate a large spectrum of cellular programs. Experimental technologies for flipon …”
    Volltext
    Journal Article
  20. 20

    MSMC-TTS: Multi-Stage Multi-Codebook VQ-VAE based Neural TTS von Guo, Haohan, Xie, Fenglong, Wu, Xixin, Soong, Frank K., MengFellow, Helen

    ISSN: 2329-9290, 2329-9304
    Veröffentlicht: Piscataway IEEE 01.01.2023
    “… We propose a Vector-Quantized Variational AutoEncoder (VQ-VAE) based feature analyzer to encode acoustic features into sequences with different time resolutions …”
    Volltext
    Journal Article