Suchergebnisse - variational graph convolutional autoencoder

Andere Suchmöglichkeiten:

  1. 1

    GVDTI: graph convolutional and variational autoencoders with attribute-level attention for drug–protein interaction prediction von Xuan, Ping, Fan, Mengsi, Cui, Hui, Zhang, Tiangang, Nakaguchi, Toshiya

    ISSN: 1467-5463, 1477-4054, 1477-4054
    Veröffentlicht: England Oxford University Press 17.01.2022
    Veröffentlicht in Briefings in bioinformatics (17.01.2022)
    “… First, a framework based on graph convolutional autoencoder is constructed to learn attention-enhanced topological embedding that integrates the topology structure …”
    Volltext
    Journal Article
  2. 2

    Anomaly Detection Based on Graph Convolutional Network–Variational Autoencoder Model Using Time-Series Vibration and Current Data von Choi, Seung-Hwan, An, Dawn, Lee, Inho, Lee, Suwoong

    ISSN: 2227-7390, 2227-7390
    Veröffentlicht: Basel MDPI AG 01.12.2024
    Veröffentlicht in Mathematics (Basel) (01.12.2024)
    “… This paper proposes a deep learning-based anomaly detection method using time-series vibration and current data, which were obtained from endurance tests on …”
    Volltext
    Journal Article
  3. 3

    Graph-Variational Convolutional Autoencoder-Based Fault Detection and Diagnosis for Photovoltaic Arrays von Arifeen, Murshedul, Petrovski, Andrei, Hasan, Md Junayed, Noman, Khandaker, Navid, Wasib Ul, Haruna, Auwal

    ISSN: 2075-1702, 2075-1702
    Veröffentlicht: Basel MDPI AG 01.12.2024
    Veröffentlicht in Machines (Basel) (01.12.2024)
    “… This paper introduces a deep learning model that combines a graph convolutional network with a variational autoencoder to diagnose faults in solar arrays …”
    Volltext
    Journal Article
  4. 4

    Subject Representation Learning from EEG using Graph Convolutional Variational Autoencoders von Mishra, Aditya, Samin, Ahnaf Mozib, Etemad, Ali, Hashemi, Javad

    ISSN: 2379-190X
    Veröffentlicht: IEEE 06.04.2025
    “… We propose GC-VASE, a graph convolutional-based variational autoencoder that leverages contrastive learning for subject representation learning from EEG data …”
    Volltext
    Tagungsbericht
  5. 5
  6. 6

    Optimization of Graph Convolutional Networks with Variational Graph Autoencoder Architecture for 3D Face Reconstruction Task von Batarfi, Mahfoudh M., Mareboyana, Manohar

    ISSN: 2768-0754
    Veröffentlicht: IEEE 08.05.2024
    Veröffentlicht in Intelligent Systems and Computer Vision (Online) (08.05.2024)
    “… To surmount these obstacles, the study embarks on the optimization of a Variational Graph Autoencoder (VGAE …”
    Volltext
    Tagungsbericht
  7. 7

    Graph convolutional network based on self-attention variational autoencoder and capsule contrastive learning for aspect-based sentiment analysis von Wang, Xinyue, Liu, Long, Chen, Zhuo, Wang, Haiyan, Yu, Bin

    ISSN: 0957-4174
    Veröffentlicht: Elsevier Ltd 15.06.2025
    Veröffentlicht in Expert systems with applications (15.06.2025)
    “… In response to these issues, this article puts forward a hybrid graph convolutional network (GCN …”
    Volltext
    Journal Article
  8. 8

    DiffuScope: A diffusion-regularized autoencoder for spatial transcriptomic clustering von Shi, Hua, Yi, Ding, Cui, Yang, Wang, Ruheng, Li, Yan, Ao, Chunyan, Guo, Ruihua, Zhang, Weihang, Peng, Tao, Le, Yuying, Cui, Yaxuan, Wei, Leyi

    ISSN: 1476-9271, 1476-928X, 1476-928X
    Veröffentlicht: England Elsevier Ltd 01.02.2026
    Veröffentlicht in Computational biology and chemistry (01.02.2026)
    “… To address this challenge, we propose DiffuScope, a clustering framework based on Graph Convolutional Variational Autoencoders (GC-VAE …”
    Volltext
    Journal Article
  9. 9

    Scalable Graph Convolutional Variational Autoencoders von Unyi, Daniel, Gyires-Toth, Balint

    Veröffentlicht: IEEE 19.05.2021
    “… Graph variational autoencoders achieved competitive results on various graph-related modeling tasks (e.g …”
    Volltext
    Tagungsbericht
  10. 10

    CVAM: CNA Profile Inference of the Spatial Transcriptome Based on the VGAE and HMM von Ma, Jian, Guo, Jingjing, Fan, Zhiwei, Zhao, Weiling, Zhou, Xiaobo

    ISSN: 2218-273X, 2218-273X
    Veröffentlicht: Switzerland MDPI AG 28.04.2023
    Veröffentlicht in Biomolecules (Basel, Switzerland) (28.04.2023)
    “… Tumors are often polyclonal due to copy number alteration (CNA) events. Through the CNA profile, we can understand the tumor heterogeneity and consistency. CNA …”
    Volltext
    Journal Article
  11. 11

    Multi-modal graph convolutional network for vessel trajectory prediction based on cooperative intention enhance using conditional variational autoencoder von Jiang, Junhao, Zuo, Yi, Li, Zhiyuan

    ISSN: 0951-8320
    Veröffentlicht: Elsevier Ltd 01.03.2026
    Veröffentlicht in Reliability engineering & system safety (01.03.2026)
    “… of trajectory prediction. To address these challenges, we propose a cooperative intention enhance multi-modal graph convolutional network (CIE-MGCN …”
    Volltext
    Journal Article
  12. 12

    Handling information loss of graph convolutional networks in collaborative filtering von Xiong, Xin, Li, XunKai, Hu, YouPeng, Wu, YiXuan, Yin, Jian

    ISSN: 0306-4379, 1873-6076
    Veröffentlicht: Elsevier Ltd 01.11.2022
    Veröffentlicht in Information systems (Oxford) (01.11.2022)
    “… To solve the above problems, we propose Variational AutoEncoder-Enhanced Graph Convolutional Network (VE-GCN) for CF …”
    Volltext
    Journal Article
  13. 13

    A broadband oscillation source location method based on LSTM variational autoencoder and graph convolutional neural network von Li, C., Wang, Y., Zheng, Z.

    Veröffentlicht: The Institution of Engineering and Technology 2023
    “… Therefore, this paper proposes a wideband oscillation disturbance source localization method based on LSTM variational autoencoder signal compression and graph convolutional neural network …”
    Volltext
    Tagungsbericht
  14. 14

    Design of an Improved Model for Blockchain Forensics Using Graph Convolutional Networks and Variational Autoencoders von Bokade, Sweta A., Sharma, V.K., Manjre, Bhushan M.

    Veröffentlicht: IEEE 20.12.2024
    “… detection should ideally be present. Current methods struggle to scale with and handle the graph-structured nature of data in blockchains, usually failing in the interpretability that's necessary for either trust or accountability …”
    Volltext
    Tagungsbericht
  15. 15

    Graph variational autoencoder with affinity propagation for community-aware anomaly detection in attributed networks von Cao, Zhijie, Yang, Chengkun, Fan, Xiaoqing, Li, Lingjie, Lin, Qiuzhen, Li, Jianqiang, Ma, Lijia

    ISSN: 1568-4946
    Veröffentlicht: Elsevier B.V 01.01.2026
    Veröffentlicht in Applied soft computing (01.01.2026)
    “… ) for community-aware ADAN. GVE-AP first employs a graph convolutional variational autoencoder to learn node embeddings from attributed networks …”
    Volltext
    Journal Article
  16. 16

    Recommender Systems Based on Variational Autoencoders and Graph Convolutional Neural Networks von Kang, Peng

    ISBN: 9798582580331
    Veröffentlicht: ProQuest Dissertations & Theses 01.01.2018
    “… The high prevalence of online social networks along with the rapid growth of mobile devices makes people have an easier access to large amounts of online …”
    Volltext
    Dissertation
  17. 17

    Variational graph auto-encoders for miRNA-disease association prediction von Ding, Yulian, Tian, Li-Ping, Lei, Xiujuan, Liao, Bo, Wu, Fang-Xiang

    ISSN: 1046-2023, 1095-9130, 1095-9130
    Veröffentlicht: United States Elsevier Inc 01.08.2021
    Veröffentlicht in Methods (San Diego, Calif.) (01.08.2021)
    “… •Graph convolutional networks obtain good representations for miRNAs and diseases.•Variational auto-encoders can deal with missing data in the miRNA-disease network …”
    Volltext
    Journal Article
  18. 18

    MODAPro: Explainable Heterogeneous Networks with Variational Graph Autoencoder for Mining Disease-Specific Functional Molecules and Pathways from Omics Data von Zhao, Jinhui, He, Jiarui, Guan, Pengwei, Bao, Han, Zhao, Xinjie, Zhao, Chunxia, Qin, Wangshu, Lu, Xin, Xu, Guowang

    ISSN: 1520-6882, 1520-6882
    Veröffentlicht: United States 28.10.2025
    Veröffentlicht in Analytical chemistry (Washington) (28.10.2025)
    “… To address these critical limitations, we introduce MODAPro, a biologically informed deep learning framework that synergistically integrates variational graph autoencoders (VAE …”
    Weitere Angaben
    Journal Article
  19. 19

    VHGAE: Drug-Target Interaction Prediction Model Based on Heterogeneous Graph Variational Autoencoder von Zhang, Chen, Sun, Jiaqi, Xing, Linlin, Zhang, Longbo, Cai, Hongzhen, Che, Kai

    ISSN: 1913-2751, 1867-1462, 1867-1462
    Veröffentlicht: Germany 21.08.2025
    “… the prediction performance of DTI. Therefore, we propose a method, called VHGAE, based on a heterogeneous graph variational autoencoder to predict drug-target interactions …”
    Volltext
    Journal Article
  20. 20

    Enhancing microbe-disease association prediction via multi-view graph convolution and latent feature learning von Wang, Bo, Wu, Peilong, Du, Xiaoxin, Zhang, Chunyu, Fu, Shanshan, Sun, Tang, Yang, Xue

    ISSN: 1476-9271, 1476-928X, 1476-928X
    Veröffentlicht: England Elsevier Ltd 01.12.2025
    Veröffentlicht in Computational biology and chemistry (01.12.2025)
    “… MVGCVAE is the first model to synergistically integrate multi-view graph convolutional networks (GCNs …”
    Volltext
    Journal Article