Suchergebnisse - variational graph convolutional autoencoder
Andere Suchmöglichkeiten:
- variational graph convolutional autoencoder »
-
1
GVDTI: graph convolutional and variational autoencoders with attribute-level attention for drug–protein interaction prediction
ISSN: 1467-5463, 1477-4054, 1477-4054Veröffentlicht: England Oxford University Press 17.01.2022Veröffentlicht in Briefings in bioinformatics (17.01.2022)“… First, a framework based on graph convolutional autoencoder is constructed to learn attention-enhanced topological embedding that integrates the topology structure …”
Volltext
Journal Article -
2
Anomaly Detection Based on Graph Convolutional Network–Variational Autoencoder Model Using Time-Series Vibration and Current Data
ISSN: 2227-7390, 2227-7390Veröffentlicht: Basel MDPI AG 01.12.2024Veröffentlicht in Mathematics (Basel) (01.12.2024)“… This paper proposes a deep learning-based anomaly detection method using time-series vibration and current data, which were obtained from endurance tests on …”
Volltext
Journal Article -
3
Graph-Variational Convolutional Autoencoder-Based Fault Detection and Diagnosis for Photovoltaic Arrays
ISSN: 2075-1702, 2075-1702Veröffentlicht: Basel MDPI AG 01.12.2024Veröffentlicht in Machines (Basel) (01.12.2024)“… This paper introduces a deep learning model that combines a graph convolutional network with a variational autoencoder to diagnose faults in solar arrays …”
Volltext
Journal Article -
4
Subject Representation Learning from EEG using Graph Convolutional Variational Autoencoders
ISSN: 2379-190XVeröffentlicht: IEEE 06.04.2025Veröffentlicht in Proceedings of the ... IEEE International Conference on Acoustics, Speech and Signal Processing (1998) (06.04.2025)“… We propose GC-VASE, a graph convolutional-based variational autoencoder that leverages contrastive learning for subject representation learning from EEG data …”
Volltext
Tagungsbericht -
5
GVDTI: graph convolutional and variational autoencoders with attribute-level attention for drug–protein interaction prediction
ISSN: 1467-5463, 1477-4054Veröffentlicht: Oxford University Press (OUP) 27.10.2021Veröffentlicht in Briefings in Bioinformatics (27.10.2021)Volltext
Journal Article -
6
Optimization of Graph Convolutional Networks with Variational Graph Autoencoder Architecture for 3D Face Reconstruction Task
ISSN: 2768-0754Veröffentlicht: IEEE 08.05.2024Veröffentlicht in Intelligent Systems and Computer Vision (Online) (08.05.2024)“… To surmount these obstacles, the study embarks on the optimization of a Variational Graph Autoencoder (VGAE …”
Volltext
Tagungsbericht -
7
Graph convolutional network based on self-attention variational autoencoder and capsule contrastive learning for aspect-based sentiment analysis
ISSN: 0957-4174Veröffentlicht: Elsevier Ltd 15.06.2025Veröffentlicht in Expert systems with applications (15.06.2025)“… In response to these issues, this article puts forward a hybrid graph convolutional network (GCN …”
Volltext
Journal Article -
8
DiffuScope: A diffusion-regularized autoencoder for spatial transcriptomic clustering
ISSN: 1476-9271, 1476-928X, 1476-928XVeröffentlicht: England Elsevier Ltd 01.02.2026Veröffentlicht in Computational biology and chemistry (01.02.2026)“… To address this challenge, we propose DiffuScope, a clustering framework based on Graph Convolutional Variational Autoencoders (GC-VAE …”
Volltext
Journal Article -
9
Scalable Graph Convolutional Variational Autoencoders
Veröffentlicht: IEEE 19.05.2021Veröffentlicht in 2021 IEEE 15th International Symposium on Applied Computational Intelligence and Informatics (SACI) (19.05.2021)“… Graph variational autoencoders achieved competitive results on various graph-related modeling tasks (e.g …”
Volltext
Tagungsbericht -
10
CVAM: CNA Profile Inference of the Spatial Transcriptome Based on the VGAE and HMM
ISSN: 2218-273X, 2218-273XVeröffentlicht: Switzerland MDPI AG 28.04.2023Veröffentlicht in Biomolecules (Basel, Switzerland) (28.04.2023)“… Tumors are often polyclonal due to copy number alteration (CNA) events. Through the CNA profile, we can understand the tumor heterogeneity and consistency. CNA …”
Volltext
Journal Article -
11
Multi-modal graph convolutional network for vessel trajectory prediction based on cooperative intention enhance using conditional variational autoencoder
ISSN: 0951-8320Veröffentlicht: Elsevier Ltd 01.03.2026Veröffentlicht in Reliability engineering & system safety (01.03.2026)“… of trajectory prediction. To address these challenges, we propose a cooperative intention enhance multi-modal graph convolutional network (CIE-MGCN …”
Volltext
Journal Article -
12
Handling information loss of graph convolutional networks in collaborative filtering
ISSN: 0306-4379, 1873-6076Veröffentlicht: Elsevier Ltd 01.11.2022Veröffentlicht in Information systems (Oxford) (01.11.2022)“… To solve the above problems, we propose Variational AutoEncoder-Enhanced Graph Convolutional Network (VE-GCN) for CF …”
Volltext
Journal Article -
13
A broadband oscillation source location method based on LSTM variational autoencoder and graph convolutional neural network
Veröffentlicht: The Institution of Engineering and Technology 2023Veröffentlicht in Annual Meeting of CSEE Study Committee of HVDC and Power Electronics (HVDC 2023) (2023)“… Therefore, this paper proposes a wideband oscillation disturbance source localization method based on LSTM variational autoencoder signal compression and graph convolutional neural network …”
Volltext
Tagungsbericht -
14
Design of an Improved Model for Blockchain Forensics Using Graph Convolutional Networks and Variational Autoencoders
Veröffentlicht: IEEE 20.12.2024Veröffentlicht in 2024 International Conference on Artificial Intelligence and Quantum Computation-Based Sensor Application (ICAIQSA) (20.12.2024)“… detection should ideally be present. Current methods struggle to scale with and handle the graph-structured nature of data in blockchains, usually failing in the interpretability that's necessary for either trust or accountability …”
Volltext
Tagungsbericht -
15
Graph variational autoencoder with affinity propagation for community-aware anomaly detection in attributed networks
ISSN: 1568-4946Veröffentlicht: Elsevier B.V 01.01.2026Veröffentlicht in Applied soft computing (01.01.2026)“… ) for community-aware ADAN. GVE-AP first employs a graph convolutional variational autoencoder to learn node embeddings from attributed networks …”
Volltext
Journal Article -
16
Recommender Systems Based on Variational Autoencoders and Graph Convolutional Neural Networks
ISBN: 9798582580331Veröffentlicht: ProQuest Dissertations & Theses 01.01.2018“… The high prevalence of online social networks along with the rapid growth of mobile devices makes people have an easier access to large amounts of online …”
Volltext
Dissertation -
17
Variational graph auto-encoders for miRNA-disease association prediction
ISSN: 1046-2023, 1095-9130, 1095-9130Veröffentlicht: United States Elsevier Inc 01.08.2021Veröffentlicht in Methods (San Diego, Calif.) (01.08.2021)“… •Graph convolutional networks obtain good representations for miRNAs and diseases.•Variational auto-encoders can deal with missing data in the miRNA-disease network …”
Volltext
Journal Article -
18
MODAPro: Explainable Heterogeneous Networks with Variational Graph Autoencoder for Mining Disease-Specific Functional Molecules and Pathways from Omics Data
ISSN: 1520-6882, 1520-6882Veröffentlicht: United States 28.10.2025Veröffentlicht in Analytical chemistry (Washington) (28.10.2025)“… To address these critical limitations, we introduce MODAPro, a biologically informed deep learning framework that synergistically integrates variational graph autoencoders (VAE …”
Weitere Angaben
Journal Article -
19
VHGAE: Drug-Target Interaction Prediction Model Based on Heterogeneous Graph Variational Autoencoder
ISSN: 1913-2751, 1867-1462, 1867-1462Veröffentlicht: Germany 21.08.2025Veröffentlicht in Interdisciplinary sciences : computational life sciences (21.08.2025)“… the prediction performance of DTI. Therefore, we propose a method, called VHGAE, based on a heterogeneous graph variational autoencoder to predict drug-target interactions …”
Volltext
Journal Article -
20
Enhancing microbe-disease association prediction via multi-view graph convolution and latent feature learning
ISSN: 1476-9271, 1476-928X, 1476-928XVeröffentlicht: England Elsevier Ltd 01.12.2025Veröffentlicht in Computational biology and chemistry (01.12.2025)“… MVGCVAE is the first model to synergistically integrate multi-view graph convolutional networks (GCNs …”
Volltext
Journal Article

