Suchergebnisse - unsupervised sparse‐autoencoder‐based deep neural network

Andere Suchmöglichkeiten:

  • Treffer 1 - 15 von 15
Treffer weiter einschränken
  1. 1

    Robust approach for AMC in frequency selective fading scenarios using unsupervised sparse-autoencoder-based deep neural network von Shah, Maqsood Hussain, Dang, Xiaoyu

    ISSN: 1751-8628, 1751-8636
    Veröffentlicht: The Institution of Engineering and Technology 05.03.2019
    Veröffentlicht in IET communications (05.03.2019)
    “… Application of deep learning in the area of automatic modulation classification (AMC) is still evolving. An unsupervised sparse-autoencoder-based deep neural network …”
    Volltext
    Journal Article
  2. 2

    Denoising Sparse Autoencoder-Based Ictal EEG Classification von Qiu, Yang, Zhou, Weidong, Yu, Nana, Du, Peidong

    ISSN: 1534-4320, 1558-0210, 1558-0210
    Veröffentlicht: United States IEEE 01.09.2018
    “… The denoising sparse autoencoder (DSAE) is an improved unsupervised deep neural network over sparse autoencoder and denoising autoencoder, which can learn the closest representation of the data …”
    Volltext
    Journal Article
  3. 3

    Sparse Autoencoder-based Multi-head Deep Neural Networks for Machinery Fault Diagnostics with Detection of Novelties von Yang, Zhe, Gjorgjevikj, Dejan, Long, Jianyu, Zi, Yanyang, Zhang, Shaohui, Li, Chuan

    ISSN: 1000-9345, 2192-8258
    Veröffentlicht: Singapore Springer Singapore 01.12.2021
    Veröffentlicht in Chinese journal of mechanical engineering (01.12.2021)
    “… To this end, a sparse autoencoder-based multi-head Deep Neural Network (DNN) is presented to jointly learn a shared encoding representation for both unsupervised reconstruction and supervised classification of the monitoring data …”
    Volltext
    Journal Article
  4. 4

    Sparse Autoencoder-based Multi-head Deep Neural Networks for Machinery Fault Diagnostics with Detection of Novelties von Zhe Yang, Dejan Gjorgjevikj, Jianyu Long, Yanyang Zi, Shaohui Zhang, Chuan Li

    ISSN: 1000-9345
    Veröffentlicht: School of Mechanical Engineering,Xi'an Jiaotong University,Xi'an 710049,China%Faculty of Computer Science and Engineer-ing,Ss.Cyril and Methodius University,Skopje,Macedonia%School of Mechanical Engineering,Dongguan University of Technology,Dongguan 523808,China%School of Mechanical Engineering,Xi'an Jiaotong University,Xi'an 710049,China 2021
    Veröffentlicht in 中国机械工程学报 (2021)
    “… of novelties.To this end,a sparse autoencoder-based multi-head Deep Neural Network(DNN)is presented to jointly learn a shared encoding representation for both unsupervised reconstruction and supervised classification of the monitoring …”
    Volltext
    Journal Article
  5. 5

    Improved sparse autoencoder based artificial neural network approach for prediction of heart disease von Mienye, Ibomoiye Domor, Sun, Yanxia, Wang, Zenghui

    ISSN: 2352-9148, 2352-9148
    Veröffentlicht: Elsevier Ltd 2020
    Veröffentlicht in Informatics in medicine unlocked (2020)
    “… The first stage involves training an improved sparse autoencoder (SAE), an unsupervised neural network, to learn the best representation of the training data …”
    Volltext
    Journal Article
  6. 6

    Sparse Autoencoder Based Deep Neural Network for Voxelwise Detection of Cerebral Microbleed von Yu-Dong Zhang, Xiao-Xia Hou, Yi-Ding Lv, Hong Chen, Yin Zhang, Shui-Hua Wang

    ISSN: 1521-9097
    Veröffentlicht: IEEE 01.12.2016
    “… The sparse autoencoder (SAE) was used to unsupervised feature learning. Then, a deep neural network was established using the learned features …”
    Volltext
    Tagungsbericht
  7. 7

    Intelligent condition monitoring method for bearing faults from highly compressed measurements using sparse over-complete features von Ahmed, H.O.A., Wong, M.L.D., Nandi, A.K.

    ISSN: 0888-3270, 1096-1216
    Veröffentlicht: Berlin Elsevier Ltd 15.01.2018
    Veröffentlicht in Mechanical systems and signal processing (15.01.2018)
    “… •Uses compressive sensing and sparse over-complete feature learning.•Uses the unsupervised sparse autoencoder for learning feature representations …”
    Volltext
    Journal Article
  8. 8

    SSAE‐MLP: Stacked sparse autoencodersbased multi‐layer perceptron for main bearing temperature prediction of large‐scale wind turbines von Xiao, Xiaocong, Liu, Jianxun, Liu, Deshun, Tang, Yufei, Dai, Juchuan, Zhang, Fan

    ISSN: 1532-0626, 1532-0634
    Veröffentlicht: Hoboken, USA John Wiley & Sons, Inc 10.09.2021
    Veröffentlicht in Concurrency and computation (10.09.2021)
    “… Then, the multiple sparse autoencoders are stacked to learn the deep features inside the input data by applying the greedy layerwise unsupervised learning algorithm …”
    Volltext
    Journal Article
  9. 9

    Research on Target Object Recognition Based on Transfer-Learning Convolutional SAE in Intelligent Urban Construction von Xie, Bing, Duan, Zhemin, Zheng, Bin, Liu, Liping

    ISSN: 2169-3536, 2169-3536
    Veröffentlicht: Piscataway IEEE 2019
    Veröffentlicht in IEEE access (2019)
    “… In this paper, we attempt to apply the deep neural network composed of sparse autoencoders based unsupervised …”
    Volltext
    Journal Article
  10. 10

    Compressive Sampling and Deep Neural Network (CS‐DNN) von Ahmed, Hosameldin, Nandi, Asoke K

    ISBN: 9781119544623, 1119544629
    Veröffentlicht: Chichester, UK Wiley 2019
    “… The compressive sampling and sparse autoencoder‐based deep neural network (CS‐SAE‐DNN …”
    Volltext
    Buchkapitel
  11. 11

    Intelligent Bearing Fault Diagnosis Method Combining Compressed Data Acquisition and Deep Learning von Sun, Jiedi, Yan, Changhong, Wen, Jiangtao

    ISSN: 0018-9456, 1557-9662
    Veröffentlicht: New York IEEE 01.01.2018
    “… Inspired by the idea of compressed sensing and deep learning, a novel intelligent diagnosis method is proposed for fault identification of rotating machines …”
    Volltext
    Journal Article
  12. 12

    Rock mass type prediction for tunnel boring machine using a novel semi-supervised method von Yu, Honggan, Tao, Jianfeng, Qin, Chengjin, Xiao, Dengyu, Sun, Hao, Liu, Chengliang

    ISSN: 0263-2241, 1873-412X
    Veröffentlicht: London Elsevier Ltd 01.07.2021
    “… •A novel semi-supervised framework is proposed to predict geological type ahead of tunnel face.•The semi-supervised framework consists of a feature extractor …”
    Volltext
    Journal Article
  13. 13

    Intelligent methods for condition monitoring of rolling bearings using vibration data von Ahmed, Hosameldin

    Veröffentlicht: ProQuest Dissertations & Theses 01.01.2019
    “… Owing to the importance of rolling bearings in rotating machines, there has been great interest in the development of computational methods for rolling …”
    Volltext
    Dissertation
  14. 14

    A deep learning and softmax regression fault diagnosis method for multi-level converter von Bin Xin, Tianzhen Wang, Tianhao Tang

    Veröffentlicht: IEEE 01.08.2017
    “… With the single-tube and double-tube fault of seven-level converter, this paper presents a new way to learn the faults feature based on the deep neural network of sparse autoencoder …”
    Volltext
    Tagungsbericht
  15. 15

    Effects of deep neural network parameters on classification of bearing faults von Ahmed, H. O. A., Dennis Wong, M. L., Nandi, A. K.

    Veröffentlicht: IEEE 01.10.2016
    “… In this paper, we classify roller element bearings fault classes under two and three hidden layers' deep neural network framework based on sparse Autoencoder …”
    Volltext
    Tagungsbericht