Suchergebnisse - transformer-based (conditional OR conditioning) variational autoencoder

  1. 1

    Cybersecurity enhancement using conditional generative adversarial network with transformer-based conditional variational autoencoder von Singh, Prithvipal, Singh, Sandeep, Singh, Gurupdesh, Singh, Amritpal

    ISSN: 0952-1976
    Veröffentlicht: Elsevier Ltd 12.12.2025
    Veröffentlicht in Engineering applications of artificial intelligence (12.12.2025)
    “… Since, Artificial Intelligence is highly developing and concatenating into several domains, cybersecurity is an important field of delivering both the …”
    Volltext
    Journal Article
  2. 2

    Anomaly detection in KOMAC high-power systems using transformer-based conditional variational autoencoder von Kim, Gi-Hu, Jeong, Hae-Seong, Kim, Han-Sung, Kwon, Hyeok-Jung, Kim, Dong-Hwan

    ISSN: 0374-4884, 1976-8524
    Veröffentlicht: Seoul The Korean Physical Society 01.10.2025
    Veröffentlicht in Journal of the Korean Physical Society (01.10.2025)
    “… This study applies a transformer-based conditional variational autoencoder (T-CVAE) model for anomaly detection in pulse waveform signals from the High Voltage Converter Modulator …”
    Volltext
    Journal Article
  3. 3

    Trans-cVAE-GAN: Transformer-Based cVAE-GAN for High-Fidelity EEG Signal Generation von Yao, Yiduo, Wang, Xiao, Hao, Xudong, Sun, Hongyu, Dong, Ruixin, Li, Yansheng

    ISSN: 2306-5354, 2306-5354
    Veröffentlicht: Switzerland MDPI AG 26.09.2025
    Veröffentlicht in Bioengineering (Basel) (26.09.2025)
    “… , limiting their effectiveness in emotion-related applications. To address these challenges, this research proposes a Transformer-based conditional variational autoencoder …”
    Volltext
    Journal Article
  4. 4

    Distributional Drift Adaptation With Temporal Conditional Variational Autoencoder for Multivariate Time Series Forecasting von He, Hui, Zhang, Qi, Yi, Kun, Shi, Kaize, Niu, Zhendong, Cao, Longbing

    ISSN: 2162-237X, 2162-2388, 2162-2388
    Veröffentlicht: United States IEEE 01.04.2025
    “… Accordingly, we propose a novel framework temporal conditional variational autoencoder (TCVAE) to model the dynamic distributional dependencies over time …”
    Volltext
    Journal Article
  5. 5

    ProT-VAE: Protein Transformer Variational AutoEncoder for functional protein design von Sevgen, Emre, Moller, Joshua, Lange, Adrian, Parker, John, Quigley, Sean, Mayer, Jeff, Srivastava, Poonam, Gayatri, Sitaram, Hosfield, David, Dilks, Clayton, Buchanan, Claire, Speltz, Thomas, Korshunova, Maria, Livne, Micha, Gill, Michelle, Ranganathan, Rama, Costa, Anthony B, Ferguson, Andrew L

    ISSN: 1091-6490, 1091-6490
    Veröffentlicht: United States 14.10.2025
    “… for conditional sequence design with the expressive, alignment-free featurization offered by transformer-based protein language models …”
    Weitere Angaben
    Journal Article
  6. 6

    DCTFormer: A Dual-Branch Transformer With Cloze Tests for Video Anomaly Detection von Chen, Pengzhan, Du, Shengdong, Zhao, Xiaole, Hu, Jie, Li, Jingjing, Li, Tianrui

    ISSN: 1520-9210, 1941-0077
    Veröffentlicht: IEEE 2025
    Veröffentlicht in IEEE transactions on multimedia (2025)
    “… Firstly, we design a novel module TRAECT (Transformer-based Residual Autoencoder with Cloze Tests …”
    Volltext
    Journal Article
  7. 7

    Transformer-based Conditional Variational Autoencoder for Controllable Story Generation von Le, Fang, Zeng, Tao, Liu, Chaochun, Liefeng Bo, Dong, Wen, Chen, Changyou

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 08.07.2021
    Veröffentlicht in arXiv.org (08.07.2021)
    “… : generation effectiveness and controllability. LVMs, especially the variational autoencoder (VAE …”
    Volltext
    Paper
  8. 8

    Improving Multi-agent Trajectory Prediction using Traffic States on Interactive Driving Scenarios von Vishnu, Chalavadi, Abhinav, Vineel, Roy, Debaditya, Mohan, C. Krishna, Babu, Ch. Sobhan

    ISSN: 2377-3766, 2377-3766
    Veröffentlicht: Piscataway IEEE 01.05.2023
    Veröffentlicht in IEEE robotics and automation letters (01.05.2023)
    “… Predicting trajectories of multiple agents in interactive driving scenarios such as intersections, and roundabouts are challenging due to the high density of …”
    Volltext
    Journal Article
  9. 9

    EmoMusicTV: Emotion-conditioned Symbolic Music Generation with Hierarchical Transformer VAE von Ji, Shulei, Yang, Xinyu

    ISSN: 1520-9210, 1941-0077
    Veröffentlicht: Piscataway IEEE 01.01.2024
    Veröffentlicht in IEEE transactions on multimedia (01.01.2024)
    “… In particular, no study explores conditional music generation with the guidance of emotion, and few studies adopt time-varying emotional conditions …”
    Volltext
    Journal Article
  10. 10

    Recurrence Boosts Diversity! Revisiting Recurrent Latent Variable in Transformer-Based Variational AutoEncoder for Diverse Text Generation von Hu, Jinyi, Yi, Xiaoyuan, Li, Wenhao, Sun, Maosong, Xie, Xing

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 23.11.2022
    Veröffentlicht in arXiv.org (23.11.2022)
    “… In this work, we propose TRACE, a Transformer-based recurrent VAE structure. TRACE imposes recurrence on segment-wise latent variables with arbitrarily separated text segments and constructs the posterior distribution with residual parameterization …”
    Volltext
    Paper
  11. 11

    Generating diverse clothed 3D human animations via a generative model von Shi, Min, Feng, Wenke, Gao, Lin, Zhu, Dengming

    ISSN: 2096-0433, 2096-0662
    Veröffentlicht: Beijing Tsinghua University Press 01.04.2024
    Veröffentlicht in Computational visual media (Beijing) (01.04.2024)
    “… At the heart of our method is a two-stage strategy. Specifically, we first learn a latent space encoding the sequence-level distribution of human motions utilizing a transformer-based conditional variational autoencoder (Transformer-CVAE …”
    Volltext
    Journal Article
  12. 12

    GSC-DVIT: A vision transformer based deep learning model for lung cancer classification in CT images von Mannepalli, Durgaprasad, Kuan Tak, Tan, Bala Krishnan, Sivaneasan, Sreenivas, Velagapudi

    ISSN: 1746-8094
    Veröffentlicht: Elsevier Ltd 01.05.2025
    Veröffentlicht in Biomedical signal processing and control (01.05.2025)
    “… •For extracting deep features with low dimensionality parameters, Conditional Variational Autoencoder (CVA) model is used …”
    Volltext
    Journal Article
  13. 13

    Transformer-based image generation from scene graphs von Sortino, Renato, Palazzo, Simone, Rundo, Francesco, Spampinato, Concetto

    ISSN: 1077-3142, 1090-235X
    Veröffentlicht: Elsevier Inc 01.08.2023
    Veröffentlicht in Computer vision and image understanding (01.08.2023)
    “… In this work, we show how employing multi-head attention to encode the graph information, as well as using a transformer-based model in the latent space for image generation can improve the quality …”
    Volltext
    Journal Article
  14. 14

    Distributional Drift Adaptation with Temporal Conditional Variational Autoencoder for Multivariate Time Series Forecasting von He, Hui, Zhang, Qi, Yi, Kun, Shi, Kaize, Niu, Zhendong, Cao, Longbing

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 02.04.2024
    Veröffentlicht in arXiv.org (02.04.2024)
    “… Accordingly, we propose a novel framework temporal conditional variational autoencoder (TCVAE) to model the dynamic distributional dependencies over time …”
    Volltext
    Paper
  15. 15

    Text Conditioned Generative Adversarial Networks Generating Images and Videos: A Critical Review von Mehmood, Rayeesa, Bashir, Rumaan, Giri, Kaiser J.

    ISSN: 2661-8907, 2662-995X, 2661-8907
    Veröffentlicht: Singapore Springer Nature Singapore 05.10.2024
    Veröffentlicht in SN computer science (05.10.2024)
    “… Generative adversarial networks (GANs) have attained a lot of attention in the deep learning community and have been in focus for the past few years. GAN finds …”
    Volltext
    Journal Article
  16. 16

    CVAE-Transformer-based industrial short-term load forecasting von Li, Jiawei, Wang, Yuanyuan, Liu, Yonghuan, Liao, Xiaoyu

    ISSN: 1742-6588, 1742-6596
    Veröffentlicht: Bristol IOP Publishing 01.06.2025
    Veröffentlicht in Journal of physics. Conference series (01.06.2025)
    “… In response to the challenges presented by the intricate, nonlinear, and temporal nature of industrial load data, a novel method integrating a Conditional Variational Autoencoder (CVAE …”
    Volltext
    Journal Article
  17. 17

    Non-Autoregressive Transformer Based Ego-Motion Independent Pedestrian Trajectory Prediction on Egocentric View von Kim, Yujin, Seo, Eunbin, Noh, Chiyun, Yi, Kyongsu

    ISSN: 2169-3536, 2169-3536
    Veröffentlicht: Piscataway IEEE 2023
    Veröffentlicht in IEEE access (2023)
    “… This paper presents a non-autoregressive transformer based trajectory prediction methodology for pedestrian on egocentric view …”
    Volltext
    Journal Article
  18. 18

    Variational Prefix Tuning for diverse and accurate code summarization using pre-trained language models von Zhao, Junda, Song, Yuliang, Cohen, Eldan

    ISSN: 0164-1212
    Veröffentlicht: Elsevier Inc 01.11.2025
    Veröffentlicht in The Journal of systems and software (01.11.2025)
    “… Our method integrates a Conditional Variational Autoencoder (CVAE) framework as a modular component into pre-trained models, enabling us to model the distribution …”
    Volltext
    Journal Article
  19. 19

    Video Variational Deep Atmospheric Turbulence Correction von Lopez-Tapia, Santiago, Wang, Xijun, Katsaggelos, Aggelos K.

    ISSN: 2169-3536, 2169-3536
    Veröffentlicht: Piscataway IEEE 2024
    Veröffentlicht in IEEE access (2024)
    “… We achieve this objective by conditioning the model on features extracted by a variational autoencoder (VAE …”
    Volltext
    Journal Article
  20. 20

    Unsupervised Multivariate Time Series Anomaly Detection via Transformer-Based Models and Time Series Encoding von Duan, Tinglin

    ISBN: 9798534656138
    Veröffentlicht: ProQuest Dissertations & Theses 01.01.2021
    “… For the point-based approach, one novel Transformer-based model: Transformer Conditional Variational Autoencoder (T-CVAE …”
    Volltext
    Dissertation