Suchergebnisse - theory of computation theory and algorithms for application domains machinery learning theory

  1. 1

    Structured Learning with Parsimony in Measurements and Computations: Theory, Algorithms, and Applications von Li, Xingguo

    ISBN: 9780438353886, 0438353889
    Veröffentlicht: ProQuest Dissertations & Theses 01.01.2018
    “… In modern “Big Data” applications, structured learning is the most widely employed methodology …”
    Volltext
    Dissertation
  2. 2

    Multi-Label Active Learning Algorithms for Image Classification: Overview and Future Promise von Wu, Jian, Sheng, Victor S, Zhang, Jing, Li, Hua, Dadakova, Tetiana, Swisher, Christine Leon, Cui, Zhiming, Zhao, Pengpeng

    ISSN: 0360-0300
    Veröffentlicht: United States 01.06.2020
    Veröffentlicht in ACM computing surveys (01.06.2020)
    “… Accordingly, multi-label active learning is becoming an important research direction. In this work, we first review existing multi-label active learning algorithms for image classification …”
    Weitere Angaben
    Journal Article
  3. 3

    Multi-Structural Games and Number of Quantifiers von Fagin, Ronald, Lenchner, Jonathan, Regan, Kenneth W., Vyas, Nikhil

    Veröffentlicht: IEEE 29.06.2021
    “… to distinguish linear orders of different sizes, and develop machinery for analyzing structures beyond linear orders …”
    Volltext
    Tagungsbericht
  4. 4

    SLIM: a Scalable and Interpretable Light-weight Fault Localization Algorithm for Imbalanced Data in Microservice von Ren, Rui, Yang, Jingbang, Yang, Linxiao, Gu, Xinyue, Sun, Liang

    ISSN: 2643-1572
    Veröffentlicht: ACM 27.10.2024
    “… ) approach to select rules iteratively, maximizing a non-monotone submodular lower bound. Compared with existing fault localization algorithms, our algorithm can adapt …”
    Volltext
    Tagungsbericht
  5. 5

    Accelerating Decision-Tree-Based Inference Through Adaptive Parallelization von Van Lunteren, Jan

    Veröffentlicht: IEEE 21.10.2023
    “… Gradient-boosted trees and random forests are among the most popular machine learning algorithms …”
    Volltext
    Tagungsbericht
  6. 6

    AutoDW: Automatic Data Wrangling Leveraging Large Language Models von Liu, Lei, Hasegawa, So, Sampat, Shailaja Keyur, Xenochristou, Maria, Chen, Wei-Peng, Kato, Takashi, Kakibuchi, Taisei, Asai, Tatsuya

    ISSN: 2643-1572
    Veröffentlicht: ACM 27.10.2024
    “… Data wrangling is a critical yet often labor-intensive process, essential for transforming raw data into formats suitable for downstream tasks such as machine learning or data analysis …”
    Volltext
    Tagungsbericht
  7. 7

    Activation Sequence Caching: High-Throughput and Memory-Efficient Generative Inference with a Single GPU von Kim, Sowoong, Sim, Eunyeong, Shin, Youngsam, Cho, YeonGon, Baek, Woongki

    Veröffentlicht: ACM 13.10.2024
    “… To bridge this gap, this work presents an in-depth characterization study of KVC, which demonstrates that KVC makes a suboptimal trade-off between computations and communications …”
    Volltext
    Tagungsbericht
  8. 8

    Self-Supervised Representation Learning and Temporal-Spectral Feature Fusion for Bed Occupancy Detection von Song, Yingjian, Pitafi, Zaid Farooq, Dou, Fei, Sun, Jin, Zhang, Xiang, Phillips, Bradley G, Song, Wenzhan

    ISSN: 2474-9567, 2474-9567
    Veröffentlicht: United States 01.09.2024
    “… This paper introduces SeismoDot, which consists of a self-supervised learning module and a spectral-temporal feature fusion module for bed occupancy detection …”
    Weitere Angaben
    Journal Article
  9. 9

    MDLoader: A Hybrid Model-Driven Data Loader for Distributed Graph Neural Network Training von Bae, Jonghyun, Choi, Jong Youl, Pasini, Massimiliano Lupo, Mehta, Kshitij, Zhang, Pei, Ibrahim, Khaled Z.

    Veröffentlicht: IEEE 17.11.2024
    “… Scalable data management is essential for processing large scientific dataset on HPC platforms for distributed deep learning …”
    Volltext
    Tagungsbericht
  10. 10

    ALISE: Accelerating Large Language Model Serving with Speculative Scheduling von Zhao, Youpeng, Wang, Jun

    ISSN: 1558-2434
    Veröffentlicht: ACM 27.10.2024
    “… ). As exemplified by ChatGPT, LLM-based applications necessitate minimal response latency and maximal throughput for inference serving …”
    Volltext
    Tagungsbericht
  11. 11

    Bayesian synthesis of probabilistic programs for automatic data modeling von Saad, Feras A., Cusumano-Towner, Marco F., Schaechtle, Ulrich, Rinard, Martin C., Mansinghka, Vikash K.

    ISSN: 2475-1421, 2475-1421
    Veröffentlicht: New York, NY, USA ACM 02.01.2019
    Veröffentlicht in Proceedings of ACM on programming languages (02.01.2019)
    “… We also derive a general class of synthesis algorithms for domain-specific languages specified by probabilistic context-free grammars and establish the soundness of our approach for these languages …”
    Volltext
    Journal Article
  12. 12

    Local Higher-Order Graph Clustering von Yin, Hao, Benson, Austin R, Leskovec, Jure, Gleich, David F

    ISSN: 2154-817X
    Veröffentlicht: United States 01.08.2017
    “… Local graph clustering methods aim to find a cluster of nodes by exploring a small region of the graph. These methods are attractive because they enable …”
    Weitere Angaben
    Journal Article
  13. 13

    Distinguishing Hidden Markov Chains von Kiefer, Stefan, Sistla, A. Prasad

    ISBN: 9781450343916, 1450343910
    Veröffentlicht: New York, NY, USA ACM 05.07.2016
    “… Motivated by applications in stochastic runtime verification, we consider the problem of distinguishing two given HMCs based on a single observation sequence that one of the HMCs generates …”
    Volltext
    Tagungsbericht
  14. 14

    Improving Fairness in AI Models on Electronic Health Records: The Case for Federated Learning Methods von Poulain, Raphael, Tarek, Mirza Farhan Bin, Beheshti, Rahmatollah

    Veröffentlicht: 12.06.2023
    “… Developing AI tools that preserve fairness is of critical importance, specifically in high-stakes applications such as those in healthcare …”
    Weitere Angaben
    Journal Article
  15. 15

    Linear Scheduling of Big Data Streams on Multiprocessor Sets in the Cloud von Tantalaki, Nicoleta, Souravlas, Stavros, Roumeliotis, Manos, Katsavounis, Stefanos

    ISBN: 1450369340, 9781450369343
    Veröffentlicht: New York, NY, USA ACM 14.10.2019
    “… (dynamically or not) and route streaming data between them. Efficient scheduling of processing tasks of data flows can reduce application latencies and eliminate network congestion …”
    Volltext
    Tagungsbericht
  16. 16

    A Memory-Efficient Markov Decision Process Computation Framework Using BDD-based Sampling Representation von Zhou, He, Hu, Jiang, Khatri, Sunil P., Liu, Frank

    Veröffentlicht: ACM 01.06.2019
    “… * Theory of computation \rightarrow Data compression; Parallel algorithms; Sequential decision making; * Mathematics of computing \rightarrowBayesian computation; …”
    Volltext
    Tagungsbericht
  17. 17

    RL-Fill: Timing-Aware Fill Insertion Using Reinforcement Learning von Cho, Jinoh, Park, Seonghyeon, Lee, Jakang, Lee, Sung-Yun, Ahn, Jinmo, Kang, Seokhyeong

    ISSN: 1558-2434
    Veröffentlicht: ACM 27.10.2024
    “… We introduce RL-Fill, a novel reinforcement learning framework for timing-aware fill insertion …”
    Volltext
    Tagungsbericht
  18. 18

    Robust Implementation of Retrieval-Augmented Generation on Edge-Based Computing-in-Memory Architectures von Qin, Ruiyang, Yan, Zheyu, Zeng, Dewen, Jia, Zhenge, Liu, Dancheng, Liu, Jianbo, Abbasi, Ahmed, Zheng, Zhi, Cao, Ningyuan, Ni, Kai, Xiong, Jinjun, Shi, Yiyu

    ISSN: 1558-2434
    Veröffentlicht: ACM 27.10.2024
    “… Although such learning methods can be optimized to reduce resource utilization, the overall required resources remain a heavy burden on edge devices …”
    Volltext
    Tagungsbericht
  19. 19

    Laminar 2.0: Serverless Stream Processing with Enhanced Code Search and Recommendations von Rotchford, Daniel, Evans, Samuel, Filgueira, Rosa

    Veröffentlicht: IEEE 17.11.2024
    “… Building on Laminar 1.0, this version introduces improved dependency management, client-server functionality, and advanced deep learning models for semantic search …”
    Volltext
    Tagungsbericht
  20. 20

    Using Static Analysis to Aid Monolith to Microservice System Transformation: Tuning Fuzzy c-Means in a VAE-Based GNN Approach von Sooksatra, Korn, Hossain Chy, Md Showkat, Arju, Md Ashfakur Rahman, Cerny, Tomas, Rivas, Pablo

    ISSN: 2151-0849
    Veröffentlicht: ACM 27.10.2024
    “… This paper explores a machine learning-driven approach to decompose monolithic systems into microservices, targeting maintainability and modularization …”
    Volltext
    Tagungsbericht