Suchergebnisse - supervised conditional variational autoencoder (VAE)

  1. 1

    Semi-Supervised Deep Conditional Variational Autoencoder for Soft Sensor Modeling von Tang, Xiaochu, Yan, Jiawei, Li, Yuan, Zhang, Xinmin, Song, Zhihuan

    ISSN: 1530-437X, 1558-1748
    Veröffentlicht: New York IEEE 01.03.2024
    Veröffentlicht in IEEE sensors journal (01.03.2024)
    “… Variational autoencoder (VAE) as an unsupervised deep generated model has been widely applied to process modeling for industrial processes due to its excellent ability in nonlinear and uncertain feature extraction …”
    Volltext
    Journal Article
  2. 2

    Conditional feature disentanglement learning for anomaly detection in machines operating under time-varying conditions von Zhou, Haoxuan, Lei, Zihao, Zio, Enrico, Wen, Guangrui, Liu, Zimin, Su, Yu, Chen, Xuefeng

    ISSN: 0888-3270, 1096-1216
    Veröffentlicht: Elsevier Ltd 15.05.2023
    Veröffentlicht in Mechanical systems and signal processing (15.05.2023)
    “… •A Conditional VAE network combined with PCA is developed to realize the feature disentanglement and AD …”
    Volltext
    Journal Article
  3. 3

    SeNM-VAE: Semi-Supervised Noise Modeling with Hierarchical Variational Autoencoder von Zheng, Dihan, Zou, Yihang, Zhang, Xiaowen, Bao, Chenglong

    ISSN: 1063-6919
    Veröffentlicht: IEEE 16.06.2024
    “… This study proposes SeNM-VAE, a semi-supervised noise modeling method that leverages both paired and un-paired datasets to generate realistic degraded data …”
    Volltext
    Tagungsbericht
  4. 4

    Supervised Determined Source Separation with Multichannel Variational Autoencoder von Kameoka, Hirokazu, Li, Li, Inoue, Shota, Makino, Shoji

    ISSN: 1530-888X, 1530-888X
    Veröffentlicht: United States 01.09.2019
    Veröffentlicht in Neural computation (01.09.2019)
    “… This letter proposes a multichannel source separation technique, the multichannel variational autoencoder (MVAE …”
    Weitere Angaben
    Journal Article
  5. 5

    Semi-Supervised Variational Autoencoders for Out-of-Distribution Generation von Lavda, Frantzeska, Kalousis, Alexandros

    ISSN: 1099-4300, 1099-4300
    Veröffentlicht: Switzerland MDPI AG 14.12.2023
    Veröffentlicht in Entropy (Basel, Switzerland) (14.12.2023)
    “… To address these issues, we propose BtVAE, a method that utilizes conditional VAE models to achieve combinatorial generalization in certain scenarios and consequently to generate out-of-distribution (OOD …”
    Volltext
    Journal Article
  6. 6

    Generating functional protein variants with variational autoencoders von Hawkins-Hooker, Alex, Depardieu, Florence, Baur, Sebastien, Couairon, Guillaume, Chen, Arthur, Bikard, David

    ISSN: 1553-7358, 1553-734X, 1553-7358
    Veröffentlicht: United States Public Library of Science 01.02.2021
    Veröffentlicht in PLoS computational biology (01.02.2021)
    “… in the design of novel proteins remains largely unexplored. Here we show that variational autoencoders trained on a dataset of almost 70000 luciferase-like oxidoreductases …”
    Volltext
    Journal Article
  7. 7

    Prognosis prediction of patients with malignant pleural mesothelioma using conditional variational autoencoder on 3D PET images and clinical data von Matsuo, Hidetoshi, Kitajima, Kazuhiro, Kono, Atsushi K., Kuribayashi, Kozo, Kijima, Takashi, Hashimoto, Masaki, Hasegawa, Seiki, Yamakado, Koichiro, Murakami, Takamichi

    ISSN: 0094-2405, 2473-4209, 2473-4209
    Veröffentlicht: 01.12.2023
    Veröffentlicht in Medical physics (Lancaster) (01.12.2023)
    “… Methods A 3D convolutional conditional variational autoencoder (3D‐CCVAE), which adds a 3D‐convolutional layer and conditional VAE to process 3D images, was used for dimensionality reduction of PET images …”
    Volltext
    Journal Article
  8. 8

    Chiller Fault Diagnosis Based on VAE-Enabled Generative Adversarial Networks von Yan, Ke, Su, Jianye, Huang, Jing, Mo, Yuchang

    ISSN: 1545-5955, 1558-3783
    Veröffentlicht: New York IEEE 01.01.2022
    “… In this study, a variational autoencoder-based conditional Wasserstein GAN with gradient penalty (CWGAN-GP-VAE …”
    Volltext
    Journal Article
  9. 9

    Small-data image classification via drop-in variational autoencoder von Mahdian, Babak, Nedbal, Radim

    ISSN: 1863-1703, 1863-1711
    Veröffentlicht: London Springer London 01.09.2025
    Veröffentlicht in Signal, image and video processing (01.09.2025)
    “… In this paper, we propose a drop-in variational autoencoder (VAE) for the task of supervised learning using an extremely small train set (i.e., n = 1 …”
    Volltext
    Journal Article
  10. 10

    Conditional Generative Denoising Autoencoder von Karatsiolis, Savvas, Schizas, Christos N.

    ISSN: 2162-237X, 2162-2388, 2162-2388
    Veröffentlicht: Piscataway IEEE 01.10.2020
    “… We present a generative denoising autoencoder model that has an embedded data classifier in its architecture in order to take advantage of class-based discriminating features and produce better data samples …”
    Volltext
    Journal Article
  11. 11

    Classification of Expert-Novice Level Using Eye Tracking And Motion Data via Conditional Multimodal Variational Autoencoder von Akamatsu, Yusuke, Maeda, Keisuke, Ogawa, Takahiro, Haseyama, Miki

    ISSN: 2379-190X
    Veröffentlicht: IEEE 06.06.2021
    “… Our proposed anomaly detection model named conditional multimodal variational autoencoder (CMVAE) has the following two technical contributions …”
    Volltext
    Tagungsbericht
  12. 12

    Joint Disentanglement of Labels and Their Features with VAE von Zou, Kaifeng, Faisan, Sylvain, Heitz, Fabrice, Valette, Sebastien

    ISSN: 2381-8549
    Veröffentlicht: IEEE 16.10.2022
    “… Most of previous semi-supervised methods that seek to obtain disentangled representations using variational autoencoders divide the latent representation into two components …”
    Volltext
    Tagungsbericht
  13. 13

    Variational AutoEncoder For Regression: Application to Brain Aging Analysis von Zhao, Qingyu, Adeli, Ehsan, Honnorat, Nicolas, Leng, Tuo, Pohl, Kilian M

    Veröffentlicht: Germany 01.01.2019
    “… While unsupervised variational autoencoders (VAE) have become a powerful tool in neuroimage analysis, their application to supervised learning is under-explored …”
    Weitere Angaben
    Journal Article
  14. 14

    Physics and chemistry from parsimonious representations: image analysis via invariant variational autoencoders von Valleti, Mani, Ziatdinov, Maxim, Liu, Yongtao, Kalinin, Sergei V.

    ISSN: 2057-3960, 2057-3960
    Veröffentlicht: London Nature Publishing Group UK 14.08.2024
    Veröffentlicht in npj computational materials (14.08.2024)
    “… and scanning tunneling microscopy images, or variability of the nanoparticles. Variational autoencoders (VAEs …”
    Volltext
    Journal Article
  15. 15

    Style Feature Extraction Using Contrastive Conditioned Variational Autoencoders With Mutual Information Constraints von Yasutomi, Suguru, Tanaka, Toshihisa

    ISSN: 1041-4347, 1558-2191
    Veröffentlicht: IEEE 01.05.2025
    Veröffentlicht in IEEE transactions on knowledge and data engineering (01.05.2025)
    “… Unsupervised methods such as variational autoencoders (VAEs) can extract styles that are usually mixed with other features. Conditional VAEs (CVAEs …”
    Volltext
    Journal Article
  16. 16

    Solving two-stage stochastic integer programs via representation learning von Wu, Yaoxin, Cao, Zhiguang, Song, Wen, Zhang, Yingqian

    ISSN: 0893-6080, 1879-2782, 1879-2782
    Veröffentlicht: United States Elsevier Ltd 01.08.2025
    Veröffentlicht in Neural networks (01.08.2025)
    “… To solve two-stage SIPs efficiently, we propose a conditional variational autoencoder (CVAE) for scenario representation learning …”
    Volltext
    Journal Article
  17. 17

    SeNM-VAE: Semi-Supervised Noise Modeling with Hierarchical Variational Autoencoder von Zheng, Dihan, Zou, Yihang, Zhang, Xiaowen, Bao, Chenglong

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 26.03.2024
    Veröffentlicht in arXiv.org (26.03.2024)
    “… This study proposes SeNM-VAE, a semi-supervised noise modeling method that leverages both paired and unpaired datasets to generate realistic degraded data …”
    Volltext
    Paper
  18. 18

    Learning Sampling Distribution and Safety Filter for Autonomous Driving with VQ-VAE and Differentiable Optimization von Idoko, Simon, Sharma, Basant, Singh, Arun Kumar

    ISSN: 2153-0866
    Veröffentlicht: IEEE 14.10.2024
    “… Typically, the sampling distribution is hand-crafted (e.g a Gaussian, or a grid). Recently, there have been efforts towards learning the sampling distribution through generative models such as Conditional Variational Autoencoder (CVAE …”
    Volltext
    Tagungsbericht
  19. 19

    Latent Combinational Game Design von Sarkar, Anurag, Cooper, Seth

    ISSN: 2475-1502, 2475-1510
    Veröffentlicht: IEEE 01.09.2024
    Veröffentlicht in IEEE transactions on games (01.09.2024)
    “… We use Gaussian mixture variational autoencoders (GMVAEs), which model the VAE latent space via a mixture of Gaussian components …”
    Volltext
    Journal Article
  20. 20

    VAESim: A probabilistic approach for self-supervised prototype discovery von Ferrante, Matteo, Boccato, Tommaso, Spasov, Simeon, Duggento, Andrea, Toschi, Nicola

    ISSN: 0262-8856
    Veröffentlicht: Elsevier B.V 01.09.2023
    Veröffentlicht in Image and vision computing (01.09.2023)
    “… In this work, we propose VAESim, an architecture for image stratification based on a conditional variational autoencoder …”
    Volltext
    Journal Article