Suchergebnisse - stochastic variance-reduced algorithm

  1. 1

    A variancereduced distributed stochastic momentum algorithm over directed networks von Gong, Xiuhui, Gao, Juan, Liu, Xinwei

    ISSN: 1561-8625, 1934-6093
    Veröffentlicht: 02.07.2025
    Veröffentlicht in Asian journal of control (02.07.2025)
    “… ‐reduced distributed stochastic momentum algorithm over directed networks, named DSM‐SAGA, is developed. DSM‐SAGA is a combination of the heavy …”
    Volltext
    Journal Article
  2. 2

    Single-Loop Variance-Reduced Stochastic Algorithm for Nonconvex-Concave Minimax Optimization von Jiang, Xia, Zhu, Linglingzhi, Zheng, Taoli, So, Anthony Man-Cho

    ISSN: 2379-190X
    Veröffentlicht: IEEE 06.04.2025
    “… In this paper, we develop a novel probabilistic variance reduction updating scheme and propose a single-loop algorithm called the probabilistic variance-reduced smoothed gradient descent-ascent (PVR-SGDA) algorithm …”
    Volltext
    Tagungsbericht
  3. 3

    Stochastic variance-reduced prox-linear algorithms for nonconvex composite optimization von Zhang, Junyu, Xiao, Lin

    ISSN: 0025-5610, 1436-4646
    Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.09.2022
    Veröffentlicht in Mathematical programming (01.09.2022)
    “… We propose a class of stochastic variance-reduced prox-linear algorithms for solving such problems and bound their sample complexities for finding an ϵ …”
    Volltext
    Journal Article
  4. 4

    A stochastic variance-reduced coordinate descent algorithm for learning sparse Bayesian network from discrete high-dimensional data von Shajoonnezhad, Nazanin, Nikanjam, Amin

    ISSN: 1868-8071, 1868-808X
    Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.03.2023
    “… Besides, we implement a block-wised stochastic coordinate descent algorithm to optimize the score function …”
    Volltext
    Journal Article
  5. 5

    Faster First-Order Methods for Stochastic Non-Convex Optimization on Riemannian Manifolds von Zhou, Pan, Yuan, Xiao-Tong, Yan, Shuicheng, Feng, Jiashi

    ISSN: 0162-8828, 1939-3539, 2160-9292, 1939-3539
    Veröffentlicht: United States IEEE 01.02.2021
    “… ) algorithm to solve the finite-sum and online Riemannian non-convex minimization problems. At the core of R-SPIDER is a recursive semi-stochastic gradient estimator …”
    Volltext
    Journal Article
  6. 6

    A Hybrid Stochastic-Deterministic Minibatch Proximal Gradient Method for Efficient Optimization and Generalization von Zhou, Pan, Yuan, Xiao-Tong, Lin, Zhouchen, Hoi, Steven C.H.

    ISSN: 0162-8828, 1939-3539, 2160-9292, 1939-3539
    Veröffentlicht: United States IEEE 01.10.2022
    “… Despite the success of stochastic variance-reduced gradient (SVRG) algorithms in solving large-scale problems, their stochastic gradient complexity often scales linearly with data size and is expensive for huge data …”
    Volltext
    Journal Article
  7. 7

    Two fast variance-reduced proximal gradient algorithms for SMVIPs-Stochastic Mixed Variational Inequality Problems with suitable applications to stochastic network games and traffic assignment problems von Yang, Zhen-Ping, Lin, Gui-Hua

    ISSN: 0377-0427, 1879-1778
    Veröffentlicht: Elsevier B.V 01.07.2022
    Veröffentlicht in Journal of computational and applied mathematics (01.07.2022)
    “… In this paper, we propose two proximal gradient algorithms with variance reduction for stochastic mixed variational inequality problems …”
    Volltext
    Journal Article
  8. 8

    Communication-Efficient Federated Learning: A Variance-Reduced Stochastic Approach With Adaptive Sparsification von Wang, Bin, Fang, Jun, Li, Hongbin, Zeng, Bing

    ISSN: 1053-587X, 1941-0476
    Veröffentlicht: New York IEEE 2023
    Veröffentlicht in IEEE transactions on signal processing (2023)
    “… Federated learning (FL) is an emerging distributed machine learning paradigm that aims to realize model training without gathering the data from data sources …”
    Volltext
    Journal Article
  9. 9

    Accelerated variance-reduced methods for saddle-point problems von Borodich, Ekaterina, Tominin, Vladislav, Tominin, Yaroslav, Kovalev, Dmitry, Gasnikov, Alexander, Dvurechensky, Pavel

    ISSN: 2192-4406
    Veröffentlicht: Elsevier Ltd 2022
    Veröffentlicht in EURO journal on computational optimization (2022)
    “… for the primal and dual variables. For such problems, under the average-smoothness assumption, we propose accelerated stochastic variance-reduced algorithms with optimal up to logarithmic factors complexity bounds …”
    Volltext
    Journal Article
  10. 10

    Stochastic variance reduced gradient with hyper-gradient for non-convex large-scale learning von Yang, Zhuang

    ISSN: 0924-669X, 1573-7497
    Veröffentlicht: New York Springer US 01.12.2023
    Veröffentlicht in Applied intelligence (Dordrecht, Netherlands) (01.12.2023)
    “… With faster convergence rate, there have been tremendous studies on developing stochastic variance reduced algorithms to solve these non-convex optimization problems …”
    Volltext
    Journal Article
  11. 11

    Cocoercivity, smoothness and bias in variance-reduced stochastic gradient methods von Morin, Martin, Giselsson, Pontus

    ISSN: 1017-1398, 1572-9265, 1572-9265
    Veröffentlicht: New York Springer US 01.10.2022
    Veröffentlicht in Numerical algorithms (01.10.2022)
    “… With the purpose of examining biased updates in variance-reduced stochastic gradient methods, we introduce SVAG, a SAG/SAGA-like method with adjustable bias …”
    Volltext
    Journal Article
  12. 12

    Loopless Variance Reduced Stochastic ADMM for Equality Constrained Problems in IoT Applications von Liu, Yuanyuan, Geng, Jiacheng, Shang, Fanhua, An, Weixin, Liu, Hongying, Zhu, Qi

    ISSN: 2327-4662, 2327-4662
    Veröffentlicht: Piscataway IEEE 01.02.2022
    Veröffentlicht in IEEE internet of things journal (01.02.2022)
    “… Recently, several stochastic variance reduced ADMM algorithms (e.g., SVRG-ADMM) have made exciting progress, such as linear convergence for strongly convex (SC) problems …”
    Volltext
    Journal Article
  13. 13

    Riemannian stochastic variance reduced gradient algorithm with retraction and vector transport von Sato, Hiroyuki, Kasai, Hiroyuki, Mishra, Bamdev

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 31.05.2019
    Veröffentlicht in arXiv.org (31.05.2019)
    “… This paper proposes a novel Riemannian extension of the Euclidean stochastic variance reduced gradient (R-SVRG …”
    Volltext
    Paper
  14. 14

    A Simple Stochastic Variance Reduced Algorithm with Fast Convergence Rates von Zhou, Kaiwen, Shang, Fanhua, Cheng, James

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 28.06.2018
    Veröffentlicht in arXiv.org (28.06.2018)
    “… , sparse and asynchronous) due to the existence of perturbation. In this paper, we introduce a simple stochastic variance reduced algorithm (MiG …”
    Volltext
    Paper
  15. 15

    Stochastic Variance-Reduced Majorization-Minimization Algorithms von Phan, Duy-Nhat, Bartz, Sedi, Guha, Nilabja, Phan, Hung M

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 11.05.2023
    Veröffentlicht in arXiv.org (11.05.2023)
    “… Consequently, effective algorithms for such scenarios are scarce. We introduce and study three stochastic variance-reduced majorization-minimization (MM …”
    Volltext
    Paper
  16. 16

    Variance Reduced Stochastic Proximal Algorithm for AUC Maximization von Soham Dan, Sahoo, Dushyant

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 04.12.2020
    Veröffentlicht in arXiv.org (04.12.2020)
    “… However, these stochastic algorithms cannot be directly used when non-decomposable pairwise performance measures are used such as Area under the ROC curve (AUC …”
    Volltext
    Paper
  17. 17

    SARAH-based Variance-reduced Algorithm for Stochastic Finite-sum Cocoercive Variational Inequalities von Beznosikov, Aleksandr, Gasnikov, Alexander

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 12.10.2022
    Veröffentlicht in arXiv.org (12.10.2022)
    “… Motivated by applications in machine learning and beyond, stochastic methods are of great importance …”
    Volltext
    Paper
  18. 18

    SARAH-M: A fast stochastic recursive gradient descent algorithm via momentum von Yang, Zhuang

    ISSN: 0957-4174
    Veröffentlicht: Elsevier Ltd 15.03.2024
    Veröffentlicht in Expert systems with applications (15.03.2024)
    “… However, the understanding of how the momentum improves the performance of modern variance reduced stochastic gradient algorithms, e.g …”
    Volltext
    Journal Article
  19. 19

    Riemannian Stochastic Variance-Reduced Cubic Regularized Newton Method for Submanifold Optimization von Zhang, Dewei, Davanloo Tajbakhsh, Sam

    ISSN: 0022-3239, 1573-2878
    Veröffentlicht: New York Springer US 01.01.2023
    Veröffentlicht in Journal of optimization theory and applications (01.01.2023)
    “… We propose a stochastic variance-reduced cubic regularized Newton algorithm to optimize the finite-sum problem over a Riemannian submanifold of the Euclidean space …”
    Volltext
    Journal Article
  20. 20

    Hybrid Acceleration Scheme for Variance Reduced Stochastic Optimization Algorithms von Sadeghi, Hamed, Giselsson, Pontus

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 12.11.2021
    Veröffentlicht in arXiv.org (12.11.2021)
    “… To alleviate this problem, we propose an optimization algorithm -- which we refer to as a hybrid acceleration scheme -- for a class of proximal variance reduced stochastic optimization algorithms …”
    Volltext
    Paper