Suchergebnisse - standard stochastic gradient algorithm
-
1
Particle filtering-based recursive identification for controlled auto-regressive systems with quantised output
ISSN: 1751-8644, 1751-8652Veröffentlicht: The Institution of Engineering and Technology 24.09.2019Veröffentlicht in IET control theory & applications (24.09.2019)“… In this study, a recursive identification algorithm is proposed based on the auxiliary model principle by modifying the standard stochastic gradient algorithm …”
Volltext
Journal Article -
2
Zeroth-Order Nonconvex Stochastic Optimization: Handling Constraints, High Dimensionality, and Saddle Points
ISSN: 1615-3375, 1615-3383Veröffentlicht: New York Springer US 01.02.2022Veröffentlicht in Foundations of computational mathematics (01.02.2022)“… to the standard stochastic gradient algorithm using only zeroth-order information. To facilitate zeroth-order optimization in high dimensions, we explore the advantages of structural sparsity assumptions. Specifically …”
Volltext
Journal Article -
3
Convergence Analysis of Weighted Stochastic Gradient Identification Algorithms Based on Latest‐Estimation for ARX Models
ISSN: 1561-8625, 1934-6093Veröffentlicht: Hoboken Wiley Subscription Services, Inc 01.01.2019Veröffentlicht in Asian journal of control (01.01.2019)“… In this paper, weighted stochastic gradient (WSG) algorithms for ARX models are proposed by modifying the standard stochastic gradient identification algorithms …”
Volltext
Journal Article -
4
Partially Coupled Stochastic Gradient Identification Methods for Non-Uniformly Sampled Systems
ISSN: 0018-9286, 1558-2523Veröffentlicht: New York, NY IEEE 01.08.2010Veröffentlicht in IEEE transactions on automatic control (01.08.2010)“… ) algorithm is proposed to estimate the model parameters with high computational efficiency compared with the standard stochastic gradient (SG) algorithm …”
Volltext
Journal Article -
5
A proportional-integral-derivative-incorporated stochastic gradient descent-based latent factor analysis model
ISSN: 0925-2312, 1872-8286Veröffentlicht: Elsevier B.V 28.02.2021Veröffentlicht in Neurocomputing (Amsterdam) (28.02.2021)“… ) is frequently adopted as the learning algorithm. However, a standard SGD algorithm updates a decision parameter with the stochastic gradient on the instant loss only, without considering information described by prior updates …”
Volltext
Journal Article -
6
Stochastic Gradient Markov Chain Monte Carlo
ISSN: 0162-1459, 1537-274X, 1537-274XVeröffentlicht: Alexandria Taylor & Francis 02.01.2021Veröffentlicht in Journal of the American Statistical Association (02.01.2021)“… In this article, we focus on a particular class of scalable Monte Carlo algorithms, stochastic gradient Markov chain Monte Carlo (SGMCMC …”
Volltext
Journal Article -
7
Almost sure convergence rates of stochastic proximal gradient descent algorithm
ISSN: 0233-1934, 1029-4945Veröffentlicht: Taylor & Francis 02.08.2024Veröffentlicht in Optimization (02.08.2024)“… Stochastic proximal gradient descent (Prox-SGD) is a standard optimization algorithm for solving stochastic composite optimization problems in machine learning …”
Volltext
Journal Article -
8
Guided Stochastic Gradient Descent Algorithm for inconsistent datasets
ISSN: 1568-4946, 1872-9681Veröffentlicht: Elsevier B.V 01.12.2018Veröffentlicht in Applied soft computing (01.12.2018)“… Stochastic Gradient Descent (SGD) Algorithm, despite its simplicity, is considered an effective and default standard optimization algorithm for machine learning …”
Volltext
Journal Article -
9
Differentially private stochastic gradient descent via compression and memorization
ISSN: 1383-7621, 1873-6165Veröffentlicht: Elsevier B.V 01.02.2023Veröffentlicht in Journal of systems architecture (01.02.2023)“… Our differentially private algorithm, called dp-memSGD for short, converges mathematically at the same rate of 1/T as standard stochastic gradient descent (SGD …”
Volltext
Journal Article -
10
Fastest rates for stochastic mirror descent methods
ISSN: 0926-6003, 1573-2894Veröffentlicht: New York Springer US 01.07.2021Veröffentlicht in Computational optimization and applications (01.07.2021)“… We propose and analyze two new algorithms: Relative Randomized Coordinate Descent (relRCD) and Relative Stochastic Gradient Descent (relSGD …”
Volltext
Journal Article -
11
Linear mixed effects models for non-Gaussian continuous repeated measurement data
ISSN: 0035-9254, 1467-9876, 1467-9876Veröffentlicht: Oxford Wiley 01.11.2020Veröffentlicht in Journal of the Royal Statistical Society Series C-Applied Statistics (01.11.2020)“… A standard framework for analysing data of this kind is a linear Gaussian mixed effects model within which the outcome variable can be decomposed into fixed effects, time invariant and time-varying …”
Volltext
Journal Article -
12
Adaptive Stochastic Gradient Descent Optimisation for Image Registration
ISSN: 0920-5691, 1573-1405Veröffentlicht: Boston Springer US 01.03.2009Veröffentlicht in International journal of computer vision (01.03.2009)“… The proposed adaptive stochastic gradient descent (ASGD) method is compared to a standard, non-adaptive Robbins-Monro (RM) algorithm …”
Volltext
Journal Article -
13
A Nonlinear PID-Incorporated Adaptive Stochastic Gradient Descent Algorithm for Latent Factor Analysis
ISSN: 1545-5955, 1558-3783Veröffentlicht: IEEE 01.07.2024Veröffentlicht in IEEE Transactions on Automation Science and Engineering (01.07.2024)“… from them. However, a standard SGD algorithm updates a latent factor based on the current stochastic gradient only, without the considerations on the past information, making a resultant model suffer from slow convergence …”
Volltext
Journal Article -
14
An Efficient Stochastic Gradient Descent Algorithm to Maximize the Coverage of Cellular Networks
ISSN: 1536-1276, 1558-2248Veröffentlicht: New York IEEE 01.07.2019Veröffentlicht in IEEE transactions on wireless communications (01.07.2019)“… A standard gradient descent algorithm and its improved version, namely a Stochastic Gradient Descent (SGD …”
Volltext
Journal Article -
15
A Fuzzy PID-Incorporated Stochastic Gradient Descent Algorithm for Fast and Accurate Latent Factor Analysis
ISSN: 1063-6706, 1941-0034Veröffentlicht: New York IEEE 01.07.2024Veröffentlicht in IEEE transactions on fuzzy systems (01.07.2024)“… However, an SGD-based LFA model is often stacked by slow convergence since a standard SGD algorithm updates a single latent factor depending on the stochastic gradient of current instance learning …”
Volltext
Journal Article -
16
Latent Factor-Based Recommenders Relying on Extended Stochastic Gradient Descent Algorithms
ISSN: 2168-2216, 2168-2232Veröffentlicht: New York IEEE 01.02.2021Veröffentlicht in IEEE transactions on systems, man, and cybernetics. Systems (01.02.2021)“… Stochastic gradient descent (SGD) is a highly efficient algorithm for building an LF model …”
Volltext
Journal Article -
17
Model-free control of nonlinear stochastic systems with discrete-time measurements
ISSN: 0018-9286Veröffentlicht: New York, NY IEEE 01.09.1998Veröffentlicht in IEEE transactions on automatic control (01.09.1998)“… This paper considers the use of the simultaneous perturbation stochastic approximation algorithm which requires only system measurements …”
Volltext
Journal Article -
18
Stochastic Gradient Made Stable: A Manifold Propagation Approach for Large-Scale Optimization
ISSN: 1041-4347, 1558-2191Veröffentlicht: New York IEEE 01.02.2017Veröffentlicht in IEEE transactions on knowledge and data engineering (01.02.2017)“… To improve the stability of stochastic gradient, recent years have witnessed the proposal of several semi-stochastic gradient descent algorithms, which distinguish themselves from standard SGD …”
Volltext
Journal Article -
19
Learning Error Refinement in Stochastic Gradient Descent-Based Latent Factor Analysis via Diversified PID Controllers
ISSN: 2471-285X, 2471-285XVeröffentlicht: Piscataway IEEE 01.10.2025Veröffentlicht in IEEE transactions on emerging topics in computational intelligence (01.10.2025)“… Unfortunately, a standard SGD algorithm trains a single latent factor relying on the stochastic gradient related to the current learning error only, leading to a slow convergence rate …”
Volltext
Journal Article -
20
Device Specifications for Neural Network Training with Analog Resistive Cross‐Point Arrays Using Tiki‐Taka Algorithms
ISSN: 2640-4567, 2640-4567Veröffentlicht: Weinheim John Wiley & Sons, Inc 01.05.2025Veröffentlicht in Advanced intelligent systems (01.05.2025)“… Recently, specialized training algorithms for analog cross‐point array‐based neural network accelerators have been introduced to counteract device non …”
Volltext
Journal Article