Suchergebnisse - stacked supervised autoencoder (SSAE)

Andere Suchmöglichkeiten:

  1. 1

    Dual‐noise autoencoder combining pseudo‐labels and consistency regularization for process fault classification von Guo, Xiaoping, Guo, Qingyu, Li, Yuan

    ISSN: 0008-4034, 1939-019X
    Veröffentlicht: Hoboken, USA John Wiley & Sons, Inc 01.04.2025
    Veröffentlicht in Canadian journal of chemical engineering (01.04.2025)
    “… A stacked supervised autoencoder (SSAE) network is trained using a small amount …”
    Volltext
    Journal Article
  2. 2

    Semi-supervised denoising autoencoder with multiple consistency regularization for process fault classification von Guo, Xiaoping, Guo, Qingyu, Li, Yuan

    ISSN: 2631-8695, 2631-8695
    Veröffentlicht: IOP Publishing 30.09.2025
    Veröffentlicht in Engineering Research Express (30.09.2025)
    “… To address these issues, this paper proposes a semi-supervised denoising autoencoder method with multi-consistency regularization (MCR-SSDAE …”
    Volltext
    Journal Article
  3. 3

    An Anthocyanin Prediction Model of Blueberry Pomace Based on Stacked Supervised Autoencoders von Siqi LIU, Guohong FENG, Zhongshen LIU, Yujie ZHU

    ISSN: 1002-0306
    Veröffentlicht: The editorial department of Science and Technology of Food Industry 01.05.2023
    Veröffentlicht in Shipin gongye ke-ji (01.05.2023)
    “… Based on the visible and near-infrared reflectance spectroscopy technique, stacked supervised autoencoders (SSAE …”
    Volltext
    Journal Article
  4. 4

    A Semi-Supervised Stacked Autoencoder Using the Pseudo Label for Classification Tasks von Lai, Jie, Wang, Xiaodan, Xiang, Qian, Quan, Wen, Song, Yafei

    ISSN: 1099-4300, 1099-4300
    Veröffentlicht: Basel MDPI AG 30.08.2023
    Veröffentlicht in Entropy (Basel, Switzerland) (30.08.2023)
    “… Thus, by introducing the pseudo-labeling method into the SAE, a novel pseudo label-based semi-supervised stacked autoencoder (PL-SSAE …”
    Volltext
    Journal Article
  5. 5

    Handling partially labeled network data: A semi-supervised approach using stacked sparse autoencoder von Aouedi, Ons, Piamrat, Kandaraj, Bagadthey, Dhruvjyoti

    ISSN: 1389-1286, 1872-7069
    Veröffentlicht: Amsterdam Elsevier B.V 22.04.2022
    Veröffentlicht in Computer networks (Amsterdam, Netherlands : 1999) (22.04.2022)
    “… Network traffic analytics has become a crucial task in order to better understand and manage network resources, especially in the network softwarization era …”
    Volltext
    Journal Article
  6. 6

    Discriminative Feature Learning With Distance Constrained Stacked Sparse Autoencoder for Hyperspectral Target Detection von Shi, Yanzi, Lei, Jie, Yin, Yaping, Cao, Kailang, Li, Yunsong, Chang, Chein-I

    ISSN: 1545-598X, 1558-0571
    Veröffentlicht: Piscataway IEEE 01.09.2019
    Veröffentlicht in IEEE geoscience and remote sensing letters (01.09.2019)
    “… Unlike supervised networks, unsupervised stacked sparse autoencoders (SSAEs) can learn deep and nonlinear features without any labeled data …”
    Volltext
    Journal Article
  7. 7

    Prognostic prediction of lung adenocarcinoma based on transcriptomic data and stacked supervised autoencoder von LI Pengpeng, CHEN Xicheng, HUANG Jinyu, WU Yazhou

    ISSN: 2097-0927
    Veröffentlicht: Editorial Office of Journal of Army Medical University 01.03.2023
    Veröffentlicht in Lu jun jun yi da xue xue bao (01.03.2023)
    “… Objective To build a stacked supervised autoencoder (SSAE) model based on transcriptomic data, so as to improve the prognostic prediction of lung adenocarcinoma (LUAD …”
    Volltext
    Journal Article
  8. 8

    Cervical cancer classification using sparse stacked autoencoder and fuzzy ARTMAP von Liaw, Lawrence Chuin Ming, Tan, Shing Chiang, Goh, Pey Yun, Lim, Chee Peng

    ISSN: 0941-0643, 1433-3058
    Veröffentlicht: London Springer London 01.08.2024
    Veröffentlicht in Neural computing & applications (01.08.2024)
    “… sparse stacked autoencoder (SSAE) and fuzzy adaptive resonance theory MAP (FAM), respectively, and is denoted as SSAE-FAM …”
    Volltext
    Journal Article
  9. 9

    Mask-based Self-supervised Network Intrusion Detection System von Lu, Xiaoya, Liu, Yifan, Feng, Fan, Liu, Yi, Liu, Zhenpeng

    ISSN: 1568-4946
    Veröffentlicht: Elsevier B.V 01.09.2025
    Veröffentlicht in Applied soft computing (01.09.2025)
    “… (Mask-based Self-supervised Network Intrusion Detection System), which employs the techniques of mask shielding and Stacked Sparse Autoencoder (SSAE …”
    Volltext
    Journal Article
  10. 10

    SSAE‐MLP: Stacked sparse autoencoders‐based multi‐layer perceptron for main bearing temperature prediction of large‐scale wind turbines von Xiao, Xiaocong, Liu, Jianxun, Liu, Deshun, Tang, Yufei, Dai, Juchuan, Zhang, Fan

    ISSN: 1532-0626, 1532-0634
    Veröffentlicht: Hoboken, USA John Wiley & Sons, Inc 10.09.2021
    Veröffentlicht in Concurrency and computation (10.09.2021)
    “… To achieve the goal, this paper proposes a novel deep learning approach named stacked sparse autoencoder multi‐layer perceptron (SSAE‐MLP …”
    Volltext
    Journal Article
  11. 11

    Improved Human Activity Recognition Using Stacked Sparse Autoencoder (SSAE) Algorithm von Aziz, Firman, Mustamin, Nurul Fathanah, Rijal, Muhammad, Tanniewa, Adam M

    ISSN: 2549-9610, 2549-9904
    Veröffentlicht: 30.07.2025
    “… This study aims to enhance the performance of Human Activity Recognition (HAR) systems by implementing the Stacked Sparse Autoencoder (SSAE …”
    Volltext
    Journal Article
  12. 12

    Automatic digital modulation recognition based on stacked sparse autoencoder von Bouchou, Mohamed, Wang, Hua, El Hadi Lakhdari, Mohammed

    ISSN: 2576-7828
    Veröffentlicht: IEEE 01.10.2017
    “… , the stacked sparse autoencoder benefits from both, unsupervised and supervised learning approaches. In fact, the main advantage of the SSAE is that it …”
    Volltext
    Tagungsbericht
  13. 13

    SSAE - DeepCNN Model for Network Intrusion Detection von Lee, Jong-Hwa, Kim, Jong-Wouk, Choi, Mi-Jung

    Veröffentlicht: IEICE 08.09.2021
    “… Our proposed model is a semi-supervised learning model that combines stacked sparse autoencoder (SSAE …”
    Volltext
    Tagungsbericht
  14. 14

    Assessment of PD severity in gas-insulated switchgear with an SSAE von Tang, Ju, Jin, Miao, Zeng, Fuping, Zhang, Xiaoxing, Huang, Rui

    ISSN: 1751-8822, 1751-8830
    Veröffentlicht: The Institution of Engineering and Technology 01.07.2017
    Veröffentlicht in IET science, measurement & technology (01.07.2017)
    “… Hence, a deep-learning neural network model called stacked sparse auto-encoder (SSAE) is proposed to realise feature extraction from the middle layer with a small number of nodes …”
    Volltext
    Journal Article
  15. 15

    Automated gleason grading on prostate biopsy slides by statistical representations of homology profile von Yan, Chaoyang, Nakane, Kazuaki, Wang, Xiangxue, Fu, Yao, Lu, Haoda, Fan, Xiangshan, Feldman, Michael D., Madabhushi, Anant, Xu, Jun

    ISSN: 0169-2607, 1872-7565, 1872-7565
    Veröffentlicht: Ireland Elsevier B.V 01.10.2020
    Veröffentlicht in Computer methods and programs in biomedicine (01.10.2020)
    “… •A new Statistical Representations of Homology Profile (SRHP) and its statistical representation was presented to capture the topological arrangement of nuclei …”
    Volltext
    Journal Article
  16. 16

    A Semi-supervised Stacked Autoencoder Approach for Network Traffic Classification von Aouedi, Ons, Piamrat, Kandaraj, Bagadthey, Dhruvjyoti

    ISSN: 2643-3303
    Veröffentlicht: IEEE 13.10.2020
    “… However, most of them are based on supervised learning where only labeled data are used …”
    Volltext
    Tagungsbericht
  17. 17

    Intelligent Bearing Fault Diagnosis Method Combining Compressed Data Acquisition and Deep Learning von Sun, Jiedi, Yan, Changhong, Wen, Jiangtao

    ISSN: 0018-9456, 1557-9662
    Veröffentlicht: New York IEEE 01.01.2018
    “… Effective intelligent fault diagnosis has long been a research focus on the condition monitoring of rotary machinery systems. Traditionally, time-domain …”
    Volltext
    Journal Article
  18. 18

    Intelligent evaluation method for identifying favorable shale oil areas based on improved stacked sparse autoencoder von Xu, Rui, Yan, Tie, Sun, Shihui, Qu, Jingyu, Hou, Zhaokai

    ISSN: 0208-189X, 1736-7492
    Veröffentlicht: Tallinn Estonian Academy Publishers 01.03.2025
    Veröffentlicht in Oil shale (Tallinn, Estonia : 1984) (01.03.2025)
    “… This study proposes an intelligent method for identifying favorable shale oil areas under semi-supervised learning (SSAE-plus …”
    Volltext
    Journal Article
  19. 19

    A Sleep Apnea Detection Method Based on Unsupervised Feature Learning and Single-Lead Electrocardiogram von Feng, Kaicheng, Qin, Hengji, Wu, Shan, Pan, Weifeng, Liu, Guanzheng

    ISSN: 0018-9456, 1557-9662
    Veröffentlicht: New York IEEE 2021
    “… However, these methods are based on feature engineering or supervised and semisupervised learning techniques, and the feature sets are always incomplete, subjective, and highly dependent on labeled data …”
    Volltext
    Journal Article
  20. 20

    Stacked Sparse Autoencoders for EMG-Based Classification of Hand Motions: A Comparative Multi Day Analyses between Surface and Intramuscular EMG von Zia ur Rehman, Muhammad, Gilani, Syed Omer, Waris, Asim, Niazi, Imran Khan, Slabaugh, Gregory, Farina, Dario, Kamavuako, Ernest Nlandu

    ISSN: 2076-3417, 2076-3417
    Veröffentlicht: Basel MDPI AG 01.07.2018
    Veröffentlicht in Applied sciences (01.07.2018)
    “… The aim of this study was to quantify the performance of stacked sparse autoencoders (SSAE), an emerging deep learning technique used to improve myoelectric control and to compare multiday surface electromyography …”
    Volltext
    Journal Article