Suchergebnisse - sparse denoise autoencoder
Andere Suchmöglichkeiten:
- sparse denoise autoencoder »
-
1
Multistage committees of deep feedforward convolutional sparse denoise autoencoder for object recognition
Veröffentlicht: IEEE 01.11.2015Veröffentlicht in 2015 Chinese Automation Congress (CAC) (01.11.2015)“… The network is trained layer-wise via denoise autoencoder (dA) with L-BFGS to optimize convolutional kernels and no backpropagation is used …”
Volltext
Tagungsbericht -
2
Single-cell RNA-seq denoising using a deep count autoencoder
ISSN: 2041-1723, 2041-1723Veröffentlicht: London Nature Publishing Group UK 23.01.2019Veröffentlicht in Nature communications (23.01.2019)“… We propose a deep count autoencoder network (DCA) to denoise scRNA-seq datasets. DCA takes the count distribution, overdispersion and sparsity of the data into account …”
Volltext
Journal Article -
3
Anomaly MFL Signal Recovery based on Denoising Sparse Autoencoder
ISSN: 1948-9447Veröffentlicht: IEEE 22.05.2021Veröffentlicht in Chinese Control and Decision Conference (22.05.2021)“… To overcome this problem, this paper proposes a novel anomaly MFL signal recovery method based on denoise sparse autoencoder (DSAE …”
Volltext
Tagungsbericht -
4
An Anomaly Detection Method for Nonlinear Industrial Process Using Sparse Stacked Denoising Autoencoder
Veröffentlicht: IEEE 16.12.2023Veröffentlicht in 2023 9th International Conference on Systems and Informatics (ICSAI) (16.12.2023)“… Therefore, a sparse stacked denoise autoencoder(SSDAE) based anomaly detection model is proposed in the paper, which uses the autoencoder model to capture the nonlinear …”
Volltext
Tagungsbericht -
5
Stacked Denoise Autoencoder Based Feature Extraction and Classification for Hyperspectral Images
ISSN: 1687-725X, 1687-7268Veröffentlicht: Cairo, Egypt Hindawi Publishing Corporation 01.01.2016Veröffentlicht in Journal of sensors (01.01.2016)“… We utilized stacked denoise autoencoder (SDAE) method to pretrain the network, which is robust to noise …”
Volltext
Journal Article -
6
Hyperspectral image unmixing using autoencoder cascade
ISSN: 2158-6276Veröffentlicht: IEEE 01.06.2015Veröffentlicht in Workshop on Hyperspectral Image and Signal Processing, Evolution in Remote Sensing (01.06.2015)“… The proposed autoencoder cascade concatenates a marginalized denoising autoencoder and a non-negative sparse autoencoder to solve …”
Volltext
Tagungsbericht -
7
Flatness pattern recognition based on stacked sparse denoising autoencoder and improved Osprey optimisation algorithm kernel-extreme learning machine
ISSN: 0301-9233, 1743-2812Veröffentlicht: 11.07.2025Veröffentlicht in Ironmaking & steelmaking (11.07.2025)“… proposes a flatness recognition method based on stack sparse denoising autoencoder (SSDAE) with improved Osprey optimisation algorithm kernel-extreme learning machine …”
Volltext
Journal Article -
8
Blind Denoising Autoencoder
ISSN: 2162-237X, 2162-2388, 2162-2388Veröffentlicht: United States IEEE 01.01.2019Veröffentlicht in IEEE transaction on neural networks and learning systems (01.01.2019)“… But there has been no autoencoder-based solution for the said blind denoising approach. So far, autoencoder-based denoising formulations have learned the model on a separate training data and have used the learned model to denoise test samples …”
Volltext
Journal Article -
9
Multi-lead model-based ECG signal denoising by guided filter
ISSN: 0952-1976, 1873-6769Veröffentlicht: Elsevier Ltd 01.03.2019Veröffentlicht in Engineering applications of artificial intelligence (01.03.2019)“… For each person, a patient-specific statistical model will be constructed by sparse autoencoder (SAE …”
Volltext
Journal Article -
10
Microscopic segmentation and classification of COVID‐19 infection with ensemble convolutional neural network
ISSN: 1059-910X, 1097-0029, 1097-0029Veröffentlicht: Hoboken, USA John Wiley & Sons, Inc 01.01.2022Veröffentlicht in Microscopy research and technique (01.01.2022)“… In Phase III, segmented images are passed to the stack sparse autoencoder (SSAE …”
Volltext
Journal Article -
11
Denoising magnetic resonance spectroscopy (MRS) data using stacked autoencoder for improving signal‐to‐noise ratio and speed of MRS
ISSN: 0094-2405, 2473-4209, 2473-4209Veröffentlicht: United States 01.12.2023Veröffentlicht in Medical physics (Lancaster) (01.12.2023)“… ‐learning approaches to denoise MRS data without increasing NSA. This method has potential to reduce the acquisition time as well as improve SNR and quality of spectra …”
Volltext
Journal Article -
12
Network Intrusion Detection Based on Sparse Autoencoder and IGA-BP Network
ISSN: 1530-8669, 1530-8677Veröffentlicht: Oxford Hindawi 2021Veröffentlicht in Wireless communications and mobile computing (2021)“… ) network is constructed. In order to reduce the data dimension and eliminate redundant information, the autoencoder network model is firstly used to denoise and dedimension …”
Volltext
Journal Article -
13
scZAG: Integrating ZINB-Based Autoencoder with Adaptive Data Augmentation Graph Contrastive Learning for scRNA-seq Clustering
ISSN: 1422-0067, 1661-6596, 1422-0067Veröffentlicht: Switzerland MDPI AG 01.06.2024Veröffentlicht in International journal of molecular sciences (01.06.2024)“… Single-cell RNA sequencing (scRNA-seq) is widely used to interpret cellular states, detect cell subpopulations, and study disease mechanisms. In scRNA-seq data …”
Volltext
Journal Article -
14
DSCD: A Novel Deep Subspace Clustering Denoise Network for Single-Cell Clustering
ISSN: 2169-3536, 2169-3536Veröffentlicht: Piscataway IEEE 2020Veröffentlicht in IEEE access (2020)“… Single-cell RNA sequencing(scRNA-seq) technology has boomed in the past decade which makes it possible to study biological problems at the resolution of …”
Volltext
Journal Article -
15
Single cell RNA-seq denoising using a deep count autoencoder
ISSN: 2692-8205, 2692-8205Veröffentlicht: Cold Spring Harbor Cold Spring Harbor Laboratory Press 13.04.2018Veröffentlicht in bioRxiv (13.04.2018)“… We propose a deep count autoencoder network (DCA) to denoise scRNA-seq datasets. DCA takes the count distribution, overdispersion and sparsity of the data into account …”
Volltext
Paper -
16
LLNet: A Deep Autoencoder Approach to Natural Low-light Image Enhancement
ISSN: 2331-8422Veröffentlicht: Ithaca Cornell University Library, arXiv.org 15.04.2016Veröffentlicht in arXiv.org (15.04.2016)“… We propose a deep autoencoder-based approach to identify signal features from low-light images handcrafting and adaptively brighten images without over-amplifying the lighter parts in images (i.e …”
Volltext
Paper -
17
Benchmarking Statistical and Machine-Learning Methods for Single-Cell RNA Sequencing Data
ISBN: 9798516079757Veröffentlicht: ProQuest Dissertations & Theses 01.01.2021“… The large-scale, high-dimensional, and sparse single-cell RNA sequencing (scRNA-seq) data have raised great challenges in the pipeline of data analysis …”
Volltext
Dissertation -
18
Stock Selection via Expand-excite Conv Attention Autoencoder and Layer Sparse Attention Transformer: A Classification Approach Inspire Time Series Sequence Recognition
ISSN: 2161-4407Veröffentlicht: IEEE 18.07.2022Veröffentlicht in Proceedings of ... International Joint Conference on Neural Networks (18.07.2022)“… In the past, we usually used feature engineering to denoise the original stock data. However, with the advent of Deep Learning, neural networks can now automatically perform feature engineering …”
Volltext
Tagungsbericht -
19
Single-Cell Transcriptome Data Clustering via Multinomial Modeling and Adaptive Fuzzy K-Means Algorithm
ISSN: 1664-8021, 1664-8021Veröffentlicht: Switzerland Frontiers Media S.A 17.04.2020Veröffentlicht in Frontiers in genetics (17.04.2020)“… Although a unique molecular identifier (UMI) can remove bias from amplification noise to a certain extent, clustering for such sparse and high-dimensional large-scale discrete data remains intractable and challenging …”
Volltext
Journal Article -
20
Enhancing Neural Network Interpretability with Feature-Aligned Sparse Autoencoders
ISSN: 2331-8422Veröffentlicht: Ithaca Cornell University Library, arXiv.org 06.11.2024Veröffentlicht in arXiv.org (06.11.2024)“… Sparse Autoencoders (SAEs) have shown promise in improving the interpretability of neural network activations, but can learn features that are not features of the input, limiting their effectiveness. We propose \textsc …”
Volltext
Paper

