Suchergebnisse - sparse denoise autoencoder

Andere Suchmöglichkeiten:

  1. 1

    Multistage committees of deep feedforward convolutional sparse denoise autoencoder for object recognition von Shicao Luo, Yongsheng Ding, Kuangrong Hao

    Veröffentlicht: IEEE 01.11.2015
    Veröffentlicht in 2015 Chinese Automation Congress (CAC) (01.11.2015)
    “… The network is trained layer-wise via denoise autoencoder (dA) with L-BFGS to optimize convolutional kernels and no backpropagation is used …”
    Volltext
    Tagungsbericht
  2. 2

    Single-cell RNA-seq denoising using a deep count autoencoder von Eraslan, Gökcen, Simon, Lukas M., Mircea, Maria, Mueller, Nikola S., Theis, Fabian J.

    ISSN: 2041-1723, 2041-1723
    Veröffentlicht: London Nature Publishing Group UK 23.01.2019
    Veröffentlicht in Nature communications (23.01.2019)
    “… We propose a deep count autoencoder network (DCA) to denoise scRNA-seq datasets. DCA takes the count distribution, overdispersion and sparsity of the data into account …”
    Volltext
    Journal Article
  3. 3

    Anomaly MFL Signal Recovery based on Denoising Sparse Autoencoder von Jiang, Lin, Liu, Jinhai, Shen, Xiangkai, Liu, Jiarui, Liu, Xiaoyuan, Zhang, Baojin, Xu, Hang

    ISSN: 1948-9447
    Veröffentlicht: IEEE 22.05.2021
    Veröffentlicht in Chinese Control and Decision Conference (22.05.2021)
    “… To overcome this problem, this paper proposes a novel anomaly MFL signal recovery method based on denoise sparse autoencoder (DSAE …”
    Volltext
    Tagungsbericht
  4. 4

    An Anomaly Detection Method for Nonlinear Industrial Process Using Sparse Stacked Denoising Autoencoder von Yang, Mingwei, Liu, YanHua, Chen, Hong, Lin, Jiefei, Lin, Haoqiang

    Veröffentlicht: IEEE 16.12.2023
    “… Therefore, a sparse stacked denoise autoencoder(SSDAE) based anomaly detection model is proposed in the paper, which uses the autoencoder model to capture the nonlinear …”
    Volltext
    Tagungsbericht
  5. 5

    Stacked Denoise Autoencoder Based Feature Extraction and Classification for Hyperspectral Images von Xing, Chen, Yang, Xiaoquan, Ma, Li

    ISSN: 1687-725X, 1687-7268
    Veröffentlicht: Cairo, Egypt Hindawi Publishing Corporation 01.01.2016
    Veröffentlicht in Journal of sensors (01.01.2016)
    “… We utilized stacked denoise autoencoder (SDAE) method to pretrain the network, which is robust to noise …”
    Volltext
    Journal Article
  6. 6

    Hyperspectral image unmixing using autoencoder cascade von Rui Guo, Wei Wang, Hairong Qi

    ISSN: 2158-6276
    Veröffentlicht: IEEE 01.06.2015
    “… The proposed autoencoder cascade concatenates a marginalized denoising autoencoder and a non-negative sparse autoencoder to solve …”
    Volltext
    Tagungsbericht
  7. 7

    Flatness pattern recognition based on stacked sparse denoising autoencoder and improved Osprey optimisation algorithm kernel-extreme learning machine von Zhou, Yaluo, Zhang, Shaochuan, Liu, Wenguang, Zhang, Ruicheng

    ISSN: 0301-9233, 1743-2812
    Veröffentlicht: 11.07.2025
    Veröffentlicht in Ironmaking & steelmaking (11.07.2025)
    “… proposes a flatness recognition method based on stack sparse denoising autoencoder (SSDAE) with improved Osprey optimisation algorithm kernel-extreme learning machine …”
    Volltext
    Journal Article
  8. 8

    Blind Denoising Autoencoder von Majumdar, Angshul

    ISSN: 2162-237X, 2162-2388, 2162-2388
    Veröffentlicht: United States IEEE 01.01.2019
    “… But there has been no autoencoder-based solution for the said blind denoising approach. So far, autoencoder-based denoising formulations have learned the model on a separate training data and have used the learned model to denoise test samples …”
    Volltext
    Journal Article
  9. 9

    Multi-lead model-based ECG signal denoising by guided filter von Hao, Huaqing, Liu, Ming, Xiong, Peng, Du, Haiman, Zhang, Hong, Lin, Feng, Hou, Zengguang, Liu, Xiuling

    ISSN: 0952-1976, 1873-6769
    Veröffentlicht: Elsevier Ltd 01.03.2019
    Veröffentlicht in Engineering applications of artificial intelligence (01.03.2019)
    “… For each person, a patient-specific statistical model will be constructed by sparse autoencoder (SAE …”
    Volltext
    Journal Article
  10. 10

    Microscopic segmentation and classification of COVID‐19 infection with ensemble convolutional neural network von Amin, Javeria, Anjum, Muhammad Almas, Sharif, Muhammad, Rehman, Amjad, Saba, Tanzila, Zahra, Rida

    ISSN: 1059-910X, 1097-0029, 1097-0029
    Veröffentlicht: Hoboken, USA John Wiley & Sons, Inc 01.01.2022
    Veröffentlicht in Microscopy research and technique (01.01.2022)
    “… In Phase III, segmented images are passed to the stack sparse autoencoder (SSAE …”
    Volltext
    Journal Article
  11. 11

    Denoising magnetic resonance spectroscopy (MRS) data using stacked autoencoder for improving signal‐to‐noise ratio and speed of MRS von Wang, Jing, Ji, Bing, Lei, Yang, Liu, Tian, Mao, Hui, Yang, Xiaofeng

    ISSN: 0094-2405, 2473-4209, 2473-4209
    Veröffentlicht: United States 01.12.2023
    Veröffentlicht in Medical physics (Lancaster) (01.12.2023)
    “… ‐learning approaches to denoise MRS data without increasing NSA. This method has potential to reduce the acquisition time as well as improve SNR and quality of spectra …”
    Volltext
    Journal Article
  12. 12

    Network Intrusion Detection Based on Sparse Autoencoder and IGA-BP Network von Deng, Hongli, Yang, Tao

    ISSN: 1530-8669, 1530-8677
    Veröffentlicht: Oxford Hindawi 2021
    “… ) network is constructed. In order to reduce the data dimension and eliminate redundant information, the autoencoder network model is firstly used to denoise and dedimension …”
    Volltext
    Journal Article
  13. 13

    scZAG: Integrating ZINB-Based Autoencoder with Adaptive Data Augmentation Graph Contrastive Learning for scRNA-seq Clustering von Zhang, Tianjiao, Ren, Jixiang, Li, Liangyu, Wu, Zhenao, Zhang, Ziheng, Dong, Guanghui, Wang, Guohua

    ISSN: 1422-0067, 1661-6596, 1422-0067
    Veröffentlicht: Switzerland MDPI AG 01.06.2024
    Veröffentlicht in International journal of molecular sciences (01.06.2024)
    “… Single-cell RNA sequencing (scRNA-seq) is widely used to interpret cellular states, detect cell subpopulations, and study disease mechanisms. In scRNA-seq data …”
    Volltext
    Journal Article
  14. 14

    DSCD: A Novel Deep Subspace Clustering Denoise Network for Single-Cell Clustering von Wang, Zhiye, Lu, Yiwen, Yu, Chang, Zhou, Tao, Li, Ruiyi, Hou, Siyun

    ISSN: 2169-3536, 2169-3536
    Veröffentlicht: Piscataway IEEE 2020
    Veröffentlicht in IEEE access (2020)
    “… Single-cell RNA sequencing(scRNA-seq) technology has boomed in the past decade which makes it possible to study biological problems at the resolution of …”
    Volltext
    Journal Article
  15. 15

    Single cell RNA-seq denoising using a deep count autoencoder von G kcen Eraslan, Simon, Lukas M, Mircea, Maria, Mueller, Nikola S, Theis, Fabian J

    ISSN: 2692-8205, 2692-8205
    Veröffentlicht: Cold Spring Harbor Cold Spring Harbor Laboratory Press 13.04.2018
    Veröffentlicht in bioRxiv (13.04.2018)
    “… We propose a deep count autoencoder network (DCA) to denoise scRNA-seq datasets. DCA takes the count distribution, overdispersion and sparsity of the data into account …”
    Volltext
    Paper
  16. 16

    LLNet: A Deep Autoencoder Approach to Natural Low-light Image Enhancement von Lore, Kin Gwn, Adedotun Akintayo, Sarkar, Soumik

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 15.04.2016
    Veröffentlicht in arXiv.org (15.04.2016)
    “… We propose a deep autoencoder-based approach to identify signal features from low-light images handcrafting and adaptively brighten images without over-amplifying the lighter parts in images (i.e …”
    Volltext
    Paper
  17. 17

    Benchmarking Statistical and Machine-Learning Methods for Single-Cell RNA Sequencing Data von Xi, Nan

    ISBN: 9798516079757
    Veröffentlicht: ProQuest Dissertations & Theses 01.01.2021
    “… The large-scale, high-dimensional, and sparse single-cell RNA sequencing (scRNA-seq) data have raised great challenges in the pipeline of data analysis …”
    Volltext
    Dissertation
  18. 18

    Stock Selection via Expand-excite Conv Attention Autoencoder and Layer Sparse Attention Transformer: A Classification Approach Inspire Time Series Sequence Recognition von Fu, Wentao, Sun, Jifeng, Jiang, Yong

    ISSN: 2161-4407
    Veröffentlicht: IEEE 18.07.2022
    “… In the past, we usually used feature engineering to denoise the original stock data. However, with the advent of Deep Learning, neural networks can now automatically perform feature engineering …”
    Volltext
    Tagungsbericht
  19. 19

    Single-Cell Transcriptome Data Clustering via Multinomial Modeling and Adaptive Fuzzy K-Means Algorithm von Chen, Liang, Wang, Weinan, Zhai, Yuyao, Deng, Minghua

    ISSN: 1664-8021, 1664-8021
    Veröffentlicht: Switzerland Frontiers Media S.A 17.04.2020
    Veröffentlicht in Frontiers in genetics (17.04.2020)
    “… Although a unique molecular identifier (UMI) can remove bias from amplification noise to a certain extent, clustering for such sparse and high-dimensional large-scale discrete data remains intractable and challenging …”
    Volltext
    Journal Article
  20. 20

    Enhancing Neural Network Interpretability with Feature-Aligned Sparse Autoencoders von Marks, Luke, Paren, Alasdair, Krueger, David, Barez, Fazl

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 06.11.2024
    Veröffentlicht in arXiv.org (06.11.2024)
    “… Sparse Autoencoders (SAEs) have shown promise in improving the interpretability of neural network activations, but can learn features that are not features of the input, limiting their effectiveness. We propose \textsc …”
    Volltext
    Paper