Suchergebnisse - semi-supervised convolutional variational autoencoder

Andere Suchmöglichkeiten:

  1. 1

    Fault Classification in High-Dimensional Complex Processes Using Semi-Supervised Deep Convolutional Generative Models von Ko, Taeyoung, Kim, Heeyoung

    ISSN: 1551-3203, 1941-0050
    Veröffentlicht: Piscataway IEEE 01.04.2020
    Veröffentlicht in IEEE transactions on industrial informatics (01.04.2020)
    “… To make effective use of a large amount of unlabeled data for fault classification, we propose in this article a new approach using semi-supervised deep generative models, allowing the complex …”
    Volltext
    Journal Article
  2. 2

    Supervised and semi-supervised deep probabilistic models for indoor positioning problems von Qian, Weizhu, Lauri, Fabrice, Gechter, Franck

    ISSN: 0925-2312, 1872-8286
    Veröffentlicht: Elsevier B.V 07.05.2021
    Veröffentlicht in Neurocomputing (Amsterdam) (07.05.2021)
    “… In this work, we propose two novel deep learning-based models, the convolutional mixture density recurrent neural network and the variational autoencoder-based semi-supervised learning model …”
    Volltext
    Journal Article
  3. 3

    A Semi-Supervised Approach For Identifying Abnormal Heart Sounds Using Variational Autoencoder von Banerjee, Rohan, Ghose, Avik

    ISSN: 2379-190X
    Veröffentlicht: IEEE 01.05.2020
    “… In this paper, we propose a semi-supervised approach to solve the problem. A convolutional Variational Autoencoder (VAE …”
    Volltext
    Tagungsbericht
  4. 4

    A semi-supervised deep learning approach for vessel trajectory classification based on AIS data von Duan, Hongda, Ma, Fei, Miao, Lixin, Zhang, Canrong

    ISSN: 0964-5691, 1873-524X
    Veröffentlicht: Elsevier Ltd 01.03.2022
    Veröffentlicht in Ocean & coastal management (01.03.2022)
    “… Automatic identification system (AIS) refers to a new type of navigation aid system equipped in maritime vehicles to monitor ship performance. It provides …”
    Volltext
    Journal Article
  5. 5

    A Semi-Supervised and Incremental Modeling Framework for Wafer Map Classification von Kong, Yuting, Ni, Dong

    ISSN: 0894-6507, 1558-2345
    Veröffentlicht: New York IEEE 01.02.2020
    Veröffentlicht in IEEE transactions on semiconductor manufacturing (01.02.2020)
    “… The Ladder network and the semi-supervised variational autoencoder are adopted to classify wafer bin maps in comparison with a standard convolutional neural network (CNN …”
    Volltext
    Journal Article
  6. 6

    Semi-supervised diagnosis method of refrigeration compressor hidden defect based on convolutional transformer autoencoder model von Li, Kang, Sun, Zhe, Jin, Huaqiang, Xu, Yingjie, Gu, Jiangping, Huang, Yuejin, Shi, Ling, Yao, Qiwei, Shen, Xi

    ISSN: 0140-7007
    Veröffentlicht: Elsevier B.V 01.02.2024
    Veröffentlicht in International journal of refrigeration (01.02.2024)
    “… •A semi-supervised diagnosis method based on convolution transformer autoencoder has been proposed for diagnosing hidden defects in refrigeration compressors …”
    Volltext
    Journal Article
  7. 7

    Anomaly Detection Based on Graph Convolutional Network–Variational Autoencoder Model Using Time-Series Vibration and Current Data von Choi, Seung-Hwan, An, Dawn, Lee, Inho, Lee, Suwoong

    ISSN: 2227-7390, 2227-7390
    Veröffentlicht: Basel MDPI AG 01.12.2024
    Veröffentlicht in Mathematics (Basel) (01.12.2024)
    “… To address this issue, we employ a semi-supervised learning approach that relies solely on normal data to effectively detect abnormal patterns, overcoming the limitations of conventional methods …”
    Volltext
    Journal Article
  8. 8

    Exploring semi-supervised variational autoencoders for biomedical relation extraction von Zhang, Yijia, Lu, Zhiyong

    ISSN: 1046-2023, 1095-9130, 1095-9130
    Veröffentlicht: United States Elsevier Inc 15.08.2019
    Veröffentlicht in Methods (San Diego, Calif.) (15.08.2019)
    “… •A semi-supervised method is proposed based on variational autoencoders (VAE) for biomedical relation extraction …”
    Volltext
    Journal Article
  9. 9

    Abnormal Event Detection From Videos Using a Two-Stream Recurrent Variational Autoencoder von Yan, Shiyang, Smith, Jeremy S., Lu, Wenjin, Zhang, Bailing

    ISSN: 2379-8920, 2379-8939
    Veröffentlicht: Piscataway IEEE 01.03.2020
    “… To make use of a large number of video surveillance videos of regular scenes, we propose a semi-supervised learning scheme, which only uses the data that contains the ordinary scenes …”
    Volltext
    Journal Article
  10. 10

    Electricity Theft Detection in Incremental Scenario: A Novel Semi-supervised Approach based on Hybrid Replay Strategy von Yao, Ruizhe, Wang, Ning, Ke, Weipeng, Liu, Zhili, Yan, Zhenhong, Sheng, Xianjun

    ISSN: 0018-9456, 1557-9662
    Veröffentlicht: New York IEEE 01.01.2023
    “… From the detection method perspective, this paper designs a semi-supervised ETD architecture that uses a temporal convolutional attention network (TCAN …”
    Volltext
    Journal Article
  11. 11

    Semi-supervised method for tunnel blasting quality prediction using measurement while drilling data von Jin, Hengxiang, Fang, Qian, Wang, Jun, Chen, Jiayao, Wang, Gan, Zheng, Guoli

    ISSN: 1674-7755
    Veröffentlicht: Elsevier B.V 01.05.2025
    “… In this study, a new semi-supervised learning method using convolutional variational autoencoder (CVAE …”
    Volltext
    Journal Article
  12. 12

    A semi-supervised autoencoder framework for joint generation and classification of breathing von Pastor-Serrano, Oscar, Lathouwers, Danny, Perkó, Zoltán

    ISSN: 0169-2607, 1872-7565, 1872-7565
    Veröffentlicht: Elsevier B.V 01.09.2021
    Veröffentlicht in Computer methods and programs in biomedicine (01.09.2021)
    “… •A novel semi-supervised algorithm based on Adversarial Autoencoders that allows joint classification and generation of breathing …”
    Volltext
    Journal Article
  13. 13

    Enhanced heart sound anomaly detection via WCOS: a semi-supervised framework integrating wavelet, autoencoder and SVM von Zeng, Peipei, Kang, Shuimiao, Fan, Fan, Liu, Jiyuan

    ISSN: 1662-5196, 1662-5196
    Veröffentlicht: Switzerland Frontiers Research Foundation 29.01.2025
    Veröffentlicht in Frontiers in neuroinformatics (29.01.2025)
    “… ) based on semi-supervised clustering, which combines wavelet reconstruction, convolutional autoencoder …”
    Volltext
    Journal Article
  14. 14

    Prognosis prediction of patients with malignant pleural mesothelioma using conditional variational autoencoder on 3D PET images and clinical data von Matsuo, Hidetoshi, Kitajima, Kazuhiro, Kono, Atsushi K., Kuribayashi, Kozo, Kijima, Takashi, Hashimoto, Masaki, Hasegawa, Seiki, Yamakado, Koichiro, Murakami, Takamichi

    ISSN: 0094-2405, 2473-4209, 2473-4209
    Veröffentlicht: 01.12.2023
    Veröffentlicht in Medical physics (Lancaster) (01.12.2023)
    “… Methods A 3D convolutional conditional variational autoencoder (3D‐CCVAE), which adds a 3D‐convolutional layer and conditional VAE to process 3D images, was used for dimensionality reduction of PET images …”
    Volltext
    Journal Article
  15. 15

    Semi-Supervised EEG Signals Classification System for Epileptic Seizure Detection von Abdelhameed, Ahmed M., Bayoumi, Magdy

    ISSN: 1070-9908, 1558-2361
    Veröffentlicht: New York IEEE 01.12.2019
    Veröffentlicht in IEEE signal processing letters (01.12.2019)
    “… The system employs a mixing of unsupervised and supervised deep learning utilizing a one-dimensional convolutional variational autoencoder …”
    Volltext
    Journal Article
  16. 16

    Self-Selecting Semi-Supervised Transformer-Attention Convolutional Network for Four Class EEG-Based Motor Imagery Decoding von Ng, Han Wei, Guan, Cuntai

    ISSN: 2153-0866
    Veröffentlicht: IEEE 14.10.2024
    “… In this study, we propose a variational autoencoder and transformer-attention based convolutional neural network (SSTACNet …”
    Volltext
    Tagungsbericht
  17. 17

    Future Frame Prediction Using Convolutional VRNN for Anomaly Detection von Lu, Yiwei, Kumar, K Mahesh, Nabavi, Seyed shahabeddin, Wang, Yang

    ISSN: 2643-6213
    Veröffentlicht: IEEE 01.09.2019
    “… Inspired by the practicability of generative models for semi-supervised learning, we propose a novel sequential generative model based on variational autoencoder (VAE …”
    Volltext
    Tagungsbericht
  18. 18

    CSCAD: Correlation Structure-Based Collective Anomaly Detection in Complex System von Qin, Huiling, Zhan, Xianyuan, Zheng, Yu

    ISSN: 1041-4347, 1558-2191
    Veröffentlicht: New York IEEE 01.05.2023
    Veröffentlicht in IEEE transactions on knowledge and data engineering (01.05.2023)
    “… ) model for high-dimensional anomaly detection problem in large systems, which is also generalizable to semi-supervised or supervised settings …”
    Volltext
    Journal Article
  19. 19

    Deep Convolutional Variational Autoencoder for Anomalous Sound Detection von Nguyen, Minh-Hieu, Nguyen, Duy-Quang, Nguyen, Dinh-Quoc, Pham, Cong-Nguyen, Bui, Dai, Han, Huy-Dung

    ISBN: 9781728154695, 1728154693
    Veröffentlicht: IEEE 13.01.2021
    “… In this paper, we propose applying the convolutional variational autoencoder (CVAE) to ASD task. Through experiments using machine sound data, the CVAE is proven to be effective in detecting abnormal sound and outperform existing methods …”
    Volltext
    Tagungsbericht
  20. 20

    Solving two-stage stochastic integer programs via representation learning von Wu, Yaoxin, Cao, Zhiguang, Song, Wen, Zhang, Yingqian

    ISSN: 0893-6080, 1879-2782, 1879-2782
    Veröffentlicht: United States Elsevier Ltd 01.08.2025
    Veröffentlicht in Neural networks (01.08.2025)
    “… To solve two-stage SIPs efficiently, we propose a conditional variational autoencoder (CVAE) for scenario representation learning …”
    Volltext
    Journal Article