Suchergebnisse - rapid numerical algorithm precoder

  • Treffer 1 - 5 von 5
Treffer weiter einschränken
  1. 1

    Performance analysis of linear precoders with imperfect channel covariance information for multicell system von Mukubwa, Emmanuel, Sokoya, Oludare A

    ISSN: 2051-3305, 2051-3305
    Veröffentlicht: The Institution of Engineering and Technology 01.08.2020
    Veröffentlicht in Journal of engineering (Stevenage, England) (01.08.2020)
    “… Comparison and analysis of the regularised zero forcing precoder, rapid numerical algorithms-based precoder and the truncated polynomial expansion-based precoder are done for massive multiple-input …”
    Volltext
    Journal Article
  2. 2

    Efficient and low-complexity matrix inversion scheme for massive multiple-input multiple-output systems using rapid numerical algorithms von Mukubwa, Emmanuel, Sokoya, Oludare A

    ISSN: 2051-3305, 2051-3305
    Veröffentlicht: The Institution of Engineering and Technology 01.10.2019
    Veröffentlicht in Journal of engineering (Stevenage, England) (01.10.2019)
    “… Performances of the regularised zero forcing (RZF) precoder, rapid numerical algorithm (RNA …”
    Volltext
    Journal Article
  3. 3

    Comparison and analysis of massive MIMO linear precoding schemes in the downlink von Mukubwa, Emmanuel, Sokoya, Oludare A., Ilcev, Dimov Stojce

    ISSN: 2153-0033
    Veröffentlicht: IEEE 01.09.2017
    Veröffentlicht in 2017 IEEE AFRICON (01.09.2017)
    “… )-based precoder, rapid numerical algorithms (RNA)-based precoder and the truncated polynomial expansion (TPE …”
    Volltext
    Tagungsbericht
  4. 4

    Evolving Multi-Branch Attention Convolutional Neural Networks for Online RIS Configuration von Stamatelis, George, Stylianopoulos, Kyriakos, Alexandropoulos, George C.

    ISSN: 2332-7731, 2332-7731
    Veröffentlicht: IEEE 2025
    “… ) with unit elements of discrete responses and a codebook-based transmit precoder in RIS-empowered Multiple-Input Single-Output (MISO …”
    Volltext
    Journal Article
  5. 5

    Learning RIS Configuration with Quantized Responses: A Neuroevolution-Trained Multi-Branch Attention Convolutional Neural Network von Stamatelis, George, Stylianopoulos, Kyriakos, Alexandropoulos, George C.

    ISSN: 2694-2941
    Veröffentlicht: IEEE 08.06.2025
    “… ) with unit elements of quantized responses and a codebook-based transmit precoder in RIS-empowered multiple-input single-output communication systems …”
    Volltext
    Tagungsbericht