Suchergebnisse - parallel OS-ELM algorithm

  • Treffer 1 - 14 von 14
Treffer weiter einschränken
  1. 1

    Spark-based Parallel OS-ELM Algorithm Application for Short-term Load Forecasting for Massive User Data von Li, Yuancheng, Yang, Rongyan, Guo, Panpan

    ISSN: 1532-5008, 1532-5016
    Veröffentlicht: Philadelphia Taylor & Francis 06.08.2020
    Veröffentlicht in Electric power components and systems (06.08.2020)
    “… Aiming at this problem, a parallel OS-ELM short-term load forecasting model based on Spark is proposed in this article …”
    Volltext
    Journal Article
  2. 2

    Parallel online sequential extreme learning machine based on MapReduce von Wang, Botao, Huang, Shan, Qiu, Junhao, Liu, Yu, Wang, Guoren

    ISSN: 0925-2312, 1872-8286
    Veröffentlicht: Elsevier B.V 03.02.2015
    Veröffentlicht in Neurocomputing (Amsterdam) (03.02.2015)
    “… Many machine learning algorithms have been designed based on MapReduce, but there are only a few works related to parallel extreme learning machine (ELM …”
    Volltext
    Journal Article
  3. 3

    System-on-a-Chip (SoC)-Based Hardware Acceleration for an Online Sequential Extreme Learning Machine (OS-ELM) von Safaei, Amin, Wu, Q. M. Jonathan, Akilan, Thangarajah, Yang, Yimin

    ISSN: 0278-0070, 1937-4151
    Veröffentlicht: New York IEEE 01.11.2019
    “… ) and online sequential ELMs (OS-ELMs) are well known for their computational efficiency and performance when processing large datasets …”
    Volltext
    Journal Article
  4. 4

    An OS-ELM based distributed ensemble classification framework in P2P networks von Sun, Yongjiao, Yuan, Ye, Wang, Guoren

    ISSN: 0925-2312, 1872-8286
    Veröffentlicht: Elsevier B.V 01.09.2011
    Veröffentlicht in Neurocomputing (Amsterdam) (01.09.2011)
    “… In this paper, we propose an OS-ELM based ensemble classification framework for distributed classification in a hierarchical P2P network …”
    Volltext
    Journal Article
  5. 5

    Bayes-OS-ELM :An Novel Ensemble Method For Classification Application von Zhu, Qingyu, Bai, Rui, Li, Mengting, Chen, Shaowei, Wen, Pengfei

    Veröffentlicht: IEEE 01.08.2019
    “… In this paper, a ensemble method based on OS-ELM and Naive Bayes(Bayes-OS-ELM) has been developed. The ensemble model establishes parallel sub-classifiers with OS-ELM …”
    Volltext
    Tagungsbericht
  6. 6

    An FPGA-Based Accelerator for Graph Embedding using Sequential Training Algorithm von Sunaga, Kazuki, Sugiura, Keisuke, Matsutani, Hiroki

    Veröffentlicht: IEEE 27.05.2024
    “… node2vec is a well-known algorithm to obtain such a graph embedding by sampling neighboring nodes on a given graph with a random walk technique …”
    Volltext
    Tagungsbericht
  7. 7

    An FPGA-Based On-Device Reinforcement Learning Approach using Online Sequential Learning von Watanabe, Hirohisa, Tsukada, Mineto, Matsutani, Hiroki

    Veröffentlicht: IEEE 01.06.2021
    “… It exploits a recently proposed neural-network based on-device learning approach that does not rely on the backpropagation method but uses OS-ELM …”
    Volltext
    Tagungsbericht
  8. 8

    Online sequential, outlier robust, and parallel layer perceptron extreme learning machine models for sediment transport in sewer pipes von Kouzehkalani Sales, Ali, Gul, Enes, Safari, Mir Jafar Sadegh

    ISSN: 1614-7499, 0944-1344, 1614-7499
    Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.03.2023
    “… In the present study, the conventional extreme learning machine (ELM) technique and its advanced versions, namely the online sequential-extreme learning machine (OS-ELM …”
    Volltext
    Journal Article
  9. 9

    Parallel ensemble of online sequential extreme learning machine based on MapReduce von Huang, Shan, Wang, Botao, Qiu, Junhao, Yao, Jitao, Wang, Guoren, Yu, Ge

    ISSN: 0925-2312, 1872-8286
    Veröffentlicht: Elsevier B.V 22.01.2016
    Veröffentlicht in Neurocomputing (Amsterdam) (22.01.2016)
    “… As one of the ELM variants, online sequential extreme learning machine (OS-ELM) provides a method to analyze incremental data …”
    Volltext
    Journal Article
  10. 10

    GPU‐accelerated and mixed norm regularized online extreme learning machine von Polat, Önder, Kayhan, Sema Koç

    ISSN: 1532-0626, 1532-0634
    Veröffentlicht: Hoboken Wiley Subscription Services, Inc 10.07.2022
    Veröffentlicht in Concurrency and computation (10.07.2022)
    “… An online version of ELM called online sequential extreme learning machine (OSELM) has also been proposed for the sequential training …”
    Volltext
    Journal Article
  11. 11

    Living Tree Moisture Content Detection Method Based on Intelligent UHF RFID Sensors and OS-PELM von Wu, Yin, Zhang, Chengwu, Liu, Wenbo

    ISSN: 1424-8220, 1424-8220
    Veröffentlicht: Basel MDPI AG 21.08.2022
    Veröffentlicht in Sensors (Basel, Switzerland) (21.08.2022)
    “… Moisture content (MC) detection plays a vital role in the monitoring and management of living trees. Its measurement accuracy is of great significance to the …”
    Volltext
    Journal Article
  12. 12

    PR-ELM: Parallel regularized extreme learning machine based on cluster von Wang, Yueqing, Dou, Yong, Liu, Xinwang, Lei, Yuanwu

    ISSN: 0925-2312, 1872-8286
    Veröffentlicht: Elsevier B.V 15.01.2016
    Veröffentlicht in Neurocomputing (Amsterdam) (15.01.2016)
    “… Recently, many variants, such as parallel ELM (P-ELM) incremental ELM and online sequential ELM(OS-ELM …”
    Volltext
    Journal Article
  13. 13

    An On-Device Federated Learning Approach for Cooperative Model Update between Edge Devices von Ito, Rei, Tsukada, Mineto, Matsutani, Hiroki

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 27.06.2021
    Veröffentlicht in arXiv.org (27.06.2021)
    “… Most edge AI focuses on prediction tasks on resource-limited edge devices while the training is done at server machines. However, retraining or customizing a …”
    Volltext
    Paper
  14. 14

    Online sequential extreme learning algorithm with kernels for bigdata classification von Pandeeswari, N., Vignesh, D., Pushpalakshmi, R., Varadharajan

    Veröffentlicht: IEEE 01.01.2017
    “… Despite the parallel and distributed ELM on MapReduce framework able to handle very large scale dataset for bigdata applications, the process of coping up with the rapidly updating data is a challenging one …”
    Volltext
    Tagungsbericht