Suchergebnisse - numerical approximation of high-dimensional functions

  1. 1

    A Proof that Artificial Neural Networks Overcome the Curse of Dimensionality in the Numerical Approximation of Black–Scholes Partial Differential Equations von Grohs, Philipp, Hornung, Fabian, Jentzen, Arnulf, von Wurstemberger, Philippe

    ISBN: 147045632X, 9781470456320
    ISSN: 0065-9266, 1947-6221
    Veröffentlicht: Providence, Rhode Island American Mathematical Society 2023
    “… ). Such numerical simulations suggest that ANNs have the capacity to very efficiently approximate high-dimensional functions and, especially, indicate that ANNs seem to admit the fundamental power …”
    Volltext
    E-Book Buch
  2. 2

    Multilevel Picard approximations of high-dimensional semilinear partial differential equations with locally monotone coefficient functions von Hutzenthaler, Martin, Nguyen, Tuan Anh

    ISSN: 0168-9274, 1873-5460
    Veröffentlicht: Elsevier B.V 01.11.2022
    Veröffentlicht in Applied numerical mathematics (01.11.2022)
    “… The full history recursive multilevel Picard approximation method for semilinear parabolic partial differential equations (PDEs …”
    Volltext
    Journal Article
  3. 3

    Quasi-interpolation for high-dimensional function approximation von Gao, Wenwu, Wang, Jiecheng, Sun, Zhengjie, Fasshauer, Gregory E.

    ISSN: 0029-599X, 0945-3245
    Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.10.2024
    Veröffentlicht in Numerische Mathematik (01.10.2024)
    “… The paper proposes a general quasi-interpolation scheme for high-dimensional function approximation …”
    Volltext
    Journal Article
  4. 4

    Numerical approximation based on deep convolutional neural network for highdimensional fully nonlinear merged PDEs and 2BSDEs von Xiao, Xu, Qiu, Wenlin, Nikan, Omid

    ISSN: 0170-4214, 1099-1476
    Veröffentlicht: Freiburg Wiley Subscription Services, Inc 15.05.2024
    Veröffentlicht in Mathematical methods in the applied sciences (15.05.2024)
    “… This paper proposes two efficient approximation methods to solve highdimensional fully nonlinear partial differential equations (NPDEs) and second …”
    Volltext
    Journal Article
  5. 5

    O(dlog N)-Quantics Approximation of N-d Tensors in High-Dimensional Numerical Modeling von Khoromskij, Boris N.

    ISSN: 0176-4276, 1432-0940
    Veröffentlicht: New York Springer-Verlag 01.10.2011
    Veröffentlicht in Constructive approximation (01.10.2011)
    “… In the present paper, we discuss the novel concept of super-compressed tensor-structured data formats in high-dimensional applications …”
    Volltext
    Journal Article
  6. 6

    Correcting for unknown errors in sparse high-dimensional function approximation von Adcock, Ben, Bao, Anyi, Brugiapaglia, Simone

    ISSN: 0029-599X, 0945-3245
    Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.07.2019
    Veröffentlicht in Numerische Mathematik (01.07.2019)
    “… We consider sparsity-based techniques for the approximation of high-dimensional functions from random pointwise evaluations …”
    Volltext
    Journal Article
  7. 7

    The numerical solution of nonlinear high dimensional generalized Benjamin–Bona–Mahony–Burgers equation via the meshless method of radial basis functions von Dehghan, Mehdi, Abbaszadeh, Mostafa, Mohebbi, Akbar

    ISSN: 0898-1221
    Veröffentlicht: 01.08.2014
    Veröffentlicht in Computers & mathematics with applications (1987) (01.08.2014)
    “… In this paper a numerical technique is proposed for solving the nonlinear generalized Benjamin-Bona-Mahony-Burgers equation …”
    Volltext
    Journal Article
  8. 8

    A numerical scheme based on radial basis function finite difference (RBF-FD) technique for solving the high-dimensional nonlinear Schrödinger equations using an explicit time discretization: Runge–Kutta method von Dehghan, Mehdi, Mohammadi, Vahid

    ISSN: 0010-4655, 1879-2944
    Veröffentlicht: Elsevier B.V 01.08.2017
    Veröffentlicht in Computer physics communications (01.08.2017)
    “… The numerical meshless method which will be used here is RBF-FD technique. The main advantage of this method is the approximation of the required derivatives based on finite difference technique at each local-support domain as Ωi. At each Ω …”
    Volltext
    Journal Article
  9. 9

    High-dimensional approximation with kernel-based multilevel methods on sparse grids von Kempf, Rüdiger, Wendland, Holger

    ISSN: 0029-599X, 0945-3245
    Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.08.2023
    Veröffentlicht in Numerische Mathematik (01.08.2023)
    “… Moderately high-dimensional approximation problems can successfully be solved by combining univariate approximation processes using an intelligent combination technique …”
    Volltext
    Journal Article
  10. 10

    DAS-PINNs: A deep adaptive sampling method for solving high-dimensional partial differential equations von Tang, Kejun, Wan, Xiaoliang, Yang, Chao

    ISSN: 0021-9991, 1090-2716
    Veröffentlicht: Elsevier Inc 01.03.2023
    Veröffentlicht in Journal of computational physics (01.03.2023)
    “… In particular, we treat the residual as a probability density function and approximate it with a deep generative model, called KRnet …”
    Volltext
    Journal Article
  11. 11

    Variable transformations in combination with wavelets and ANOVA for high-dimensional approximation von Potts, Daniel, Weidensager, Laura

    ISSN: 1019-7168, 1572-9044
    Veröffentlicht: New York Springer US 01.06.2024
    Veröffentlicht in Advances in computational mathematics (01.06.2024)
    “… We use hyperbolic wavelet regression for the fast reconstruction of high-dimensional functions having only low-dimensional variable interactions …”
    Volltext
    Journal Article
  12. 12

    Survey of modeling and optimization strategies to solve high-dimensional design problems with computationally-expensive black-box functions von Shan, Songqing, Wang, G. Gary

    ISSN: 1615-147X, 1615-1488
    Veröffentlicht: Berlin/Heidelberg Springer-Verlag 01.03.2010
    Veröffentlicht in Structural and multidisciplinary optimization (01.03.2010)
    “… Such integration, however, faces multiple challenges. The most eminent challenges arise from high-dimensionality of problems, computationally-expensive analysis/simulation, and unknown function properties (i.e …”
    Volltext
    Journal Article
  13. 13

    Rank-Adaptive Tensor Methods for High-Dimensional Nonlinear PDEs von Dektor, Alec, Rodgers, Abram, Venturi, Daniele

    ISSN: 0885-7474, 1573-7691
    Veröffentlicht: New York Springer US 01.08.2021
    Veröffentlicht in Journal of scientific computing (01.08.2021)
    “… We present a new rank-adaptive tensor method to compute the numerical solution of high-dimensional nonlinear PDEs …”
    Volltext
    Journal Article
  14. 14

    An adaptive PCE-HDMR metamodeling approach for high-dimensional problems von Yue, Xinxin, Zhang, Jian, Gong, Weijie, Luo, Min, Duan, Libin

    ISSN: 1615-147X, 1615-1488
    Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.07.2021
    Veröffentlicht in Structural and multidisciplinary optimization (01.07.2021)
    “… Metamodel-based high-dimensional model representation (HDMR) has recently been developed as a promising tool for approximating high-dimensional and computationally expensive problems in engineering design and optimization …”
    Volltext
    Journal Article
  15. 15

    DNN Expression Rate Analysis of High-Dimensional PDEs: Application to Option Pricing von Elbrächter, Dennis, Grohs, Philipp, Jentzen, Arnulf, Schwab, Christoph

    ISSN: 0176-4276, 1432-0940
    Veröffentlicht: New York Springer US 01.02.2022
    Veröffentlicht in Constructive approximation (01.02.2022)
    “… ) univariate functions, this provides insights into rates of deep ReLU approximation of multivariate functions with tensor structures …”
    Volltext
    Journal Article
  16. 16

    Deep Kusuoka Approximation: High-Order Spatial Approximation for Solving High-Dimensional Kolmogorov Equations and Its Application to Finance von Naito, Riu, Yamada, Toshihiro

    ISSN: 0927-7099, 1572-9974
    Veröffentlicht: New York Springer US 01.09.2024
    Veröffentlicht in Computational economics (01.09.2024)
    “… The paper introduces a new deep learning-based high-order spatial approximation for a solution of a high-dimensional Kolmogorov equation where the initial condition is only assumed to be a …”
    Volltext
    Journal Article
  17. 17

    Split S-ROCK Methods for High-Dimensional Stochastic Differential Equations von Komori, Yoshio, Burrage, Kevin

    ISSN: 0885-7474, 1573-7691
    Veröffentlicht: New York Springer US 01.12.2023
    Veröffentlicht in Journal of scientific computing (01.12.2023)
    “… We propose explicit stochastic Runge–Kutta (RK) methods for high-dimensional Itô …”
    Volltext
    Journal Article
  18. 18

    Visual Exploration of High Dimensional Scalar Functions von Gerber, S, Bremer, P, Pascucci, V, Whitaker, R

    ISSN: 1077-2626, 1941-0506
    Veröffentlicht: United States IEEE 01.11.2010
    “… In many instances it is possible to observe both input parameters and system outputs, and characterize the system as a high-dimensional function …”
    Volltext
    Journal Article
  19. 19

    Fast and flexible Bayesian species distribution modelling using Gaussian processes von Golding, Nick, Purse, Bethan V., Warton, David

    ISSN: 2041-210X, 2041-210X
    Veröffentlicht: London John Wiley & Sons, Inc 01.05.2016
    Veröffentlicht in Methods in ecology and evolution (01.05.2016)
    “… ‐dimensional interactions between predictors. We propose fitting GP SDMs using deterministic numerical approximations, rather than Markov chain Monte Carlo methods in order to make GPs more computationally efficient and easy to use …”
    Volltext
    Journal Article
  20. 20

    Hermite kernel surrogates for the value function of high-dimensional nonlinear optimal control problems von Ehring, Tobias, Haasdonk, Bernard

    ISSN: 1019-7168, 1572-9044
    Veröffentlicht: New York Springer US 01.06.2024
    Veröffentlicht in Advances in computational mathematics (01.06.2024)
    “… Numerical methods for the optimal feedback control of high-dimensional dynamical systems typically suffer from the curse of dimensionality …”
    Volltext
    Journal Article