Suchergebnisse - novel stack deep convolutional autoencoder
Andere Suchmöglichkeiten:
- novel stack deep convolutional autoencoder »
-
1
SDCA: a novel stack deep convolutional autoencoder – an application on retinal image denoising
ISSN: 1751-9659, 1751-9667Veröffentlicht: The Institution of Engineering and Technology 12.12.2019Veröffentlicht in IET image processing (12.12.2019)“… This study represents a deep learning based approach to denoising images and restoring features using stack denoising convolutional autoencoder …”
Volltext
Journal Article -
2
Precise single step and multistep short-term photovoltaic parameters forecasting based on reduced deep convolutional stack autoencoder and minimum variance multikernel random vector functional network
ISSN: 0952-1976Veröffentlicht: Elsevier Ltd 01.10.2024Veröffentlicht in Engineering applications of artificial intelligence (01.10.2024)“… To address this, we have developed a novel hybrid model: a reduced deep convolutional stack autoencoder with a minimum variance multikernel random vector functional link network (RDCSAE-MVMRVFLN …”
Volltext
Journal Article -
3
Deep Convolutional Stack Autoencoder of Process Adaptive VMD Data With Robust Multikernel RVFLN for Power Quality Events Recognition
ISSN: 0018-9456, 1557-9662Veröffentlicht: New York IEEE 2021Veröffentlicht in IEEE transactions on instrumentation and measurement (2021)“… ). A novel reduced deep convolutional neural network (RDCNN) embedded with stack autoencoder, that is, RDCSAE structure is introduced to extract the most discriminative …”
Volltext
Journal Article -
4
Epileptic Seizure Recognition Using Reduced Deep Convolutional Stack Autoencoder and Improved Kernel RVFLN From EEG Signals
ISSN: 1932-4545, 1940-9990, 1940-9990Veröffentlicht: New York IEEE 01.06.2021Veröffentlicht in IEEE transactions on biomedical circuits and systems (01.06.2021)“… In this paper, reduced deep convolutional stack autoencoder (RDCSAE) and improved kernel random vector functional link network (IKRVFLN …”
Volltext
Journal Article -
5
BrainNet: a fusion assisted novel optimal framework of residual blocks and stacked autoencoders for multimodal brain tumor classification
ISSN: 2045-2322, 2045-2322Veröffentlicht: London Nature Publishing Group UK 11.03.2024Veröffentlicht in Scientific reports (11.03.2024)“… However, a few important challenges arise, such as (i) the selection of the most important deep learning architecture for classification (ii …”
Volltext
Journal Article -
6
SDCAE: Stack Denoising Convolutional Autoencoder Model for Accident Risk Prediction Via Traffic Big Data
Veröffentlicht: IEEE 01.08.2018Veröffentlicht in 2018 Sixth International Conference on Advanced Cloud and Big Data (CBD) (01.08.2018)“… However, predicting the risk of citywide accidents remains an open issue. To address this problem, we propose SDCAE, a novel Stack Denoise Convolutional Auto-Encoder algorithm to predict the risk of traffic accident in the city-level …”
Volltext
Tagungsbericht -
7
Multilayer Fisher extreme learning machine for classification
ISSN: 2199-4536, 2198-6053Veröffentlicht: Cham Springer International Publishing 01.04.2023Veröffentlicht in Complex & intelligent systems (01.04.2023)“… To address this problem, a novel Fisher extreme learning machine autoencoder (FELM-AE) is proposed and is used as the component for the multilayer Fisher extreme leaning machine (ML-FELM …”
Volltext
Journal Article -
8
Parametric Learning of Texture Filters by Stacked Fisher Autoencoders
Veröffentlicht: IEEE 01.11.2016Veröffentlicht in 2016 International Conference on Digital Image Computing: Techniques and Applications (DICTA) (01.11.2016)“… The Fisher autoencoders are independently computed in stacks of variable depth based on the complexity of patterns under study and the ability of each individual filter to extract deep features …”
Volltext
Tagungsbericht -
9
Deep Decoupling Convolutional Neural Network for Intelligent Compound Fault Diagnosis
ISSN: 2169-3536, 2169-3536Veröffentlicht: Piscataway IEEE 2019Veröffentlicht in IEEE access (2019)“… To solve such a problem, a novel method called deep decoupling convolutional neural network is proposed for intelligent compound fault diagnosis …”
Volltext
Journal Article -
10
Deep Neural Networks for In Situ Hybridization Grid Completion and Clustering
ISSN: 1545-5963, 1557-9964, 1557-9964Veröffentlicht: United States IEEE 01.03.2020Veröffentlicht in IEEE/ACM transactions on computational biology and bioinformatics (01.03.2020)“… As we stack multiple RBMs to form a deep belief network (DBN), we progressively …”
Volltext
Journal Article -
11
Deep Learning-Based Assessment of ILD Designs in HRCT Pictures
Veröffentlicht: IEEE 28.08.2024Veröffentlicht in 2024 Second International Conference on Intelligent Cyber Physical Systems and Internet of Things (ICoICI) (28.08.2024)“… Several parts make up the model, including a fully convolutional network, a sparse stack autoencoder and decoder, an edge depth CNN, and a dilated convolution. The proposed model's performance is also contrasted with those of other models that are currently in use, including ResNet50, VGG16, and VGG19 …”
Volltext
Tagungsbericht -
12
Deep Learning Frameworks with Applications in Medical Signal and Image Classification
Veröffentlicht: ProQuest Dissertations & Theses 01.01.2021“… The main contributions of this research include: 1) proposing novel deep learning architectures which can improve the classification performance, generalisation ability …”
Volltext
Dissertation