Suchergebnisse - novel stack deep convolutional autoencoder

Andere Suchmöglichkeiten:

  • Treffer 1 - 12 von 12
Treffer weiter einschränken
  1. 1

    SDCA: a novel stack deep convolutional autoencoder – an application on retinal image denoising von Ghosh, Swarup Kr, Biswas, Biswajit, Ghosh, Anupam

    ISSN: 1751-9659, 1751-9667
    Veröffentlicht: The Institution of Engineering and Technology 12.12.2019
    Veröffentlicht in IET image processing (12.12.2019)
    “… This study represents a deep learning based approach to denoising images and restoring features using stack denoising convolutional autoencoder …”
    Volltext
    Journal Article
  2. 2

    Precise single step and multistep short-term photovoltaic parameters forecasting based on reduced deep convolutional stack autoencoder and minimum variance multikernel random vector functional network von Sahani, Mrutyunjaya, Choudhury, Sasmita, Siddique, Marif Daula, Parida, Tanmoy, Dash, Pradipta Kishore, Panda, Sanjib Kumar

    ISSN: 0952-1976
    Veröffentlicht: Elsevier Ltd 01.10.2024
    Veröffentlicht in Engineering applications of artificial intelligence (01.10.2024)
    “… To address this, we have developed a novel hybrid model: a reduced deep convolutional stack autoencoder with a minimum variance multikernel random vector functional link network (RDCSAE-MVMRVFLN …”
    Volltext
    Journal Article
  3. 3

    Deep Convolutional Stack Autoencoder of Process Adaptive VMD Data With Robust Multikernel RVFLN for Power Quality Events Recognition von Sahani, Mrutyunjaya, Dash, Pradipta Kishore

    ISSN: 0018-9456, 1557-9662
    Veröffentlicht: New York IEEE 2021
    “… ). A novel reduced deep convolutional neural network (RDCNN) embedded with stack autoencoder, that is, RDCSAE structure is introduced to extract the most discriminative …”
    Volltext
    Journal Article
  4. 4

    Epileptic Seizure Recognition Using Reduced Deep Convolutional Stack Autoencoder and Improved Kernel RVFLN From EEG Signals von Sahani, Mrutyunjaya, Rout, Susanta Kumar, Dash, Pradipta Kishor

    ISSN: 1932-4545, 1940-9990, 1940-9990
    Veröffentlicht: New York IEEE 01.06.2021
    “… In this paper, reduced deep convolutional stack autoencoder (RDCSAE) and improved kernel random vector functional link network (IKRVFLN …”
    Volltext
    Journal Article
  5. 5

    BrainNet: a fusion assisted novel optimal framework of residual blocks and stacked autoencoders for multimodal brain tumor classification von Ullah, Muhammad Sami, Khan, Muhammad Attique, Almujally, Nouf Abdullah, Alhaisoni, Majed, Akram, Tallha, Shabaz, Mohammad

    ISSN: 2045-2322, 2045-2322
    Veröffentlicht: London Nature Publishing Group UK 11.03.2024
    Veröffentlicht in Scientific reports (11.03.2024)
    “… However, a few important challenges arise, such as (i) the selection of the most important deep learning architecture for classification (ii …”
    Volltext
    Journal Article
  6. 6

    SDCAE: Stack Denoising Convolutional Autoencoder Model for Accident Risk Prediction Via Traffic Big Data von Chen, Chao, Fan, Xiaoliang, Zheng, Chuanpan, Xiao, Lujing, Cheng, Ming, Wang, Cheng

    Veröffentlicht: IEEE 01.08.2018
    “… However, predicting the risk of citywide accidents remains an open issue. To address this problem, we propose SDCAE, a novel Stack Denoise Convolutional Auto-Encoder algorithm to predict the risk of traffic accident in the city-level …”
    Volltext
    Tagungsbericht
  7. 7

    Multilayer Fisher extreme learning machine for classification von Lai, Jie, Wang, Xiaodan, Xiang, Qian, Wang, Jian, Lei, Lei

    ISSN: 2199-4536, 2198-6053
    Veröffentlicht: Cham Springer International Publishing 01.04.2023
    Veröffentlicht in Complex & intelligent systems (01.04.2023)
    “… To address this problem, a novel Fisher extreme learning machine autoencoder (FELM-AE) is proposed and is used as the component for the multilayer Fisher extreme leaning machine (ML-FELM …”
    Volltext
    Journal Article
  8. 8

    Parametric Learning of Texture Filters by Stacked Fisher Autoencoders von Shahriari, Arash

    Veröffentlicht: IEEE 01.11.2016
    “… The Fisher autoencoders are independently computed in stacks of variable depth based on the complexity of patterns under study and the ability of each individual filter to extract deep features …”
    Volltext
    Tagungsbericht
  9. 9

    Deep Decoupling Convolutional Neural Network for Intelligent Compound Fault Diagnosis von Huang, Ruyi, Liao, Yixiao, Zhang, Shaohui, Li, Weihua

    ISSN: 2169-3536, 2169-3536
    Veröffentlicht: Piscataway IEEE 2019
    Veröffentlicht in IEEE access (2019)
    “… To solve such a problem, a novel method called deep decoupling convolutional neural network is proposed for intelligent compound fault diagnosis …”
    Volltext
    Journal Article
  10. 10

    Deep Neural Networks for In Situ Hybridization Grid Completion and Clustering von Li, Yujie, Huang, Heng, Chen, Hanbo, Liu, Tianming

    ISSN: 1545-5963, 1557-9964, 1557-9964
    Veröffentlicht: United States IEEE 01.03.2020
    “… As we stack multiple RBMs to form a deep belief network (DBN), we progressively …”
    Volltext
    Journal Article
  11. 11

    Deep Learning-Based Assessment of ILD Designs in HRCT Pictures von A, Balamanikandan, M, Sukanya, M, Dhanalakshmi, M, Vimala, N, Arul, Yatm, Narayana Reddy

    Veröffentlicht: IEEE 28.08.2024
    “… Several parts make up the model, including a fully convolutional network, a sparse stack autoencoder and decoder, an edge depth CNN, and a dilated convolution. The proposed model's performance is also contrasted with those of other models that are currently in use, including ResNet50, VGG16, and VGG19 …”
    Volltext
    Tagungsbericht
  12. 12

    Deep Learning Frameworks with Applications in Medical Signal and Image Classification von Jia, Guangyu

    Veröffentlicht: ProQuest Dissertations & Theses 01.01.2021
    “… The main contributions of this research include: 1) proposing novel deep learning architectures which can improve the classification performance, generalisation ability …”
    Volltext
    Dissertation