Suchergebnisse - normative deep autoencoder

  1. 1

    A generalizable normative deep autoencoder for brain morphological anomaly detection: application to the multi-site StratiBip dataset on bipolar disorder in an external validation framework von Sampaio, Inês Won, Tassi, Emma, Bellani, Marcella, Benedetti, Francesco, Nenadić, Igor, Phillips, Mary L., Piras, Fabrizio, Yatham, Lakshmi, Bianchi, Anna Maria, Brambilla, Paolo, Maggioni, Eleonora

    ISSN: 0933-3657, 1873-2860, 1873-2860
    Veröffentlicht: Netherlands Elsevier B.V 01.03.2025
    Veröffentlicht in Artificial intelligence in medicine (01.03.2025)
    “… ). We used deep autoencoders in an anomaly detection framework, combined for the first time with a confounder removal step that integrates training and external validation …”
    Volltext
    Journal Article
  2. 2

    A generalizable normative deep autoencoder for brain morphological anomaly detection: application to the multi-site StratiBip dataset on bipolar disorder in an external validation framework von Sampaio, Inês Won, Tassi, Emma, Bellani, Marcella, Benedetti, Francesco, Nenadic, Igor, Phillips, Mary, Piras, Fabrizio, Yatham, Lakshmi, Bianchi, Anna Maria, Brambilla, Paolo, Maggioni, Eleonora

    ISSN: 2692-8205, 2692-8205
    Veröffentlicht: United States Cold Spring Harbor Laboratory 07.09.2024
    Veröffentlicht in bioRxiv (07.09.2024)
    “… ). We employed deep autoencoders in an anomaly detection framework, combined with a confounder removal step integrating training and external validation …”
    Volltext
    Journal Article Paper
  3. 3

    Using deep autoencoders to identify abnormal brain structural patterns in neuropsychiatric disorders: A large‐scale multi‐sample study von Pinaya, Walter H. L., Mechelli, Andrea, Sato, João R.

    ISSN: 1065-9471, 1097-0193, 1097-0193
    Veröffentlicht: Hoboken, USA John Wiley & Sons, Inc 15.02.2019
    Veröffentlicht in Human brain mapping (15.02.2019)
    “… ‐based disorders which aim to overcome these limitations. We used an artificial neural network known as “deep autoencoder …”
    Volltext
    Journal Article
  4. 4

    Normative modelling using deep autoencoders: a multi-cohort study on mild cognitive impairment and Alzheimer's disease von Pinaya, Walter H L, Scarpazza, Cristina, Garcia-Dias, Rafael, Vieira, Sandra, Baecker, Lea, Da Costa, Pedro F, Redolfi, Alberto, Frisoni, Giovanni B, Pievani, Michela, Calhoun, Vince D, Sato, João R, Mechelli, Andrea, Alzheimer's Disease Neuroimaging Initiative, Australian Imaging Biomarkers And Lifestyle Flagship Study Of Ageing

    ISSN: 2692-8205, 2692-8205
    Veröffentlicht: Cold Spring Harbor Cold Spring Harbor Laboratory Press 11.02.2020
    Veröffentlicht in bioRxiv (11.02.2020)
    “… In this study, we assessed normative models based on deep autoencoders using structural neuroimaging data from patients with Alzheimer's disease (n=206 …”
    Volltext
    Paper
  5. 5

    Using normative modelling to detect disease progression in mild cognitive impairment and Alzheimer’s disease in a cross-sectional multi-cohort study von Pinaya, Walter H. L., Scarpazza, Cristina, Garcia-Dias, Rafael, Vieira, Sandra, Baecker, Lea, F da Costa, Pedro, Redolfi, Alberto, Frisoni, Giovanni B., Pievani, Michela, Calhoun, Vince D., Sato, João R., Mechelli, Andrea

    ISSN: 2045-2322, 2045-2322
    Veröffentlicht: London Nature Publishing Group UK 03.08.2021
    Veröffentlicht in Scientific reports (03.08.2021)
    “… In this study, we assessed normative models based on deep autoencoders using structural neuroimaging data from patients with Alzheimer’s disease (n = 206 …”
    Volltext
    Journal Article
  6. 6

    Personalized MRI-based characterization of subcortical anomalies in Ataxia-Telangiectasia using deep-learning von Saini, Catalina, Salazar-Vilches, Cristian, Blanchard, Caroline C.V., Whitehouse, William P., Parra, Denis, Dineen, Rob A., Pszczolkowski, Stefan

    ISSN: 1932-6203, 1932-6203
    Veröffentlicht: United States Public Library of Science 29.08.2025
    Veröffentlicht in PloS one (29.08.2025)
    “… To characterize basal ganglia abnormalities in A-T using a normative self-supervised deep autoencoder trained on MRI-based diffusion and perfusion features from healthy children …”
    Volltext
    Journal Article
  7. 7

    AutoLog: Anomaly detection by deep autoencoding of system logs von Catillo, Marta, Pecchia, Antonio, Villano, Umberto

    ISSN: 0957-4174, 1873-6793
    Veröffentlicht: New York Elsevier Ltd 01.04.2022
    Veröffentlicht in Expert systems with applications (01.04.2022)
    “… The use of system logs for detecting and troubleshooting anomalies of production systems has been known since the early days of computers. In spite of the …”
    Volltext
    Journal Article
  8. 8

    Next-Gen Manhole Monitoring: Autoencoder-Assisted Anomaly Detection von Krishnan, R. Santhana, Gopikumar, S., Muthu, A. Essaki, Raj, J. Relin Francis, Kumari, D. Abitha, Malar, P. Stella Rose

    Veröffentlicht: IEEE 05.06.2024
    “… To address these challenges, an advanced anomaly detection system is proposed, leveraging deep learning with Autoencoders …”
    Volltext
    Tagungsbericht
  9. 9

    Normative Modeling using Multimodal Variational Autoencoders to Identify Abnormal Brain Volume Deviations in Alzheimer's Disease von Kumar, Sayantan, Payne, Philip R O, Sotiras, Aristeidis

    ISSN: 0277-786X
    Veröffentlicht: United States 01.02.2023
    “… Existing deep learning based normative models have been applied on only single modality Magnetic Resonance Imaging (MRI) neuroimaging data …”
    Weitere Angaben
    Journal Article
  10. 10

    Normative Modeling Via Conditional Variational Autoencoder and Adversarial Learning to Identify Brain Dysfunction in Alzheimer's Disease von Wang, Xuetong, Zhou, Rong, Zhao, Kanhao, Leow, Alex, Zhang, Yu, He, Lifang

    ISSN: 1945-8452
    Veröffentlicht: IEEE 18.04.2023
    “… In this study, we propose a novel normative modeling method by combining conditional variational autoencoder with adversarial learning (ACVAE …”
    Volltext
    Tagungsbericht
  11. 11

    Novelty Detection using Deep Normative Modeling for IMU-Based Abnormal Movement Monitoring in Parkinson’s Disease and Autism Spectrum Disorders von Mohammadian Rad, Nastaran, Van Laarhoven, Twan, Furlanello, Cesare, Marchiori, Elena

    ISSN: 1424-8220, 1424-8220
    Veröffentlicht: Switzerland MDPI 19.10.2018
    Veröffentlicht in Sensors (Basel, Switzerland) (19.10.2018)
    “… In this paper, we propose deep normative modeling as a probabilistic novelty detection method, in which we model the distribution of normal human movements recorded by wearable sensors and try …”
    Volltext
    Journal Article
  12. 12

    Deep reinforcement learning and convolutional autoencoders for anomaly detection of congenital inner ear malformations in clinical CT images von López Diez, Paula, Sundgaard, Josefine Vilsbøll, Margeta, Jan, Diab, Khassan, Patou, François, Paulsen, Rasmus R.

    ISSN: 0895-6111, 1879-0771, 1879-0771
    Veröffentlicht: United States Elsevier Ltd 01.04.2024
    Veröffentlicht in Computerized medical imaging and graphics (01.04.2024)
    “… We propose a framework for inner ear abnormality detection based on deep reinforcement learning for landmark detection which is trained uniquely in normative data …”
    Volltext
    Journal Article
  13. 13

    Path-masked Autoencoder Guiding Unsupervised Attribute Graph Node Clustering von DING Xinyu, KONG Bing, CHEN Hongmei, BAO Chongming, ZHOU Lihua

    ISSN: 1002-137X
    Veröffentlicht: Editorial office of Computer Science 01.01.2025
    Veröffentlicht in Ji suan ji ke xue (01.01.2025)
    “… obtain the deep potential community information of the network,and can not make sui-table information integration of the features …”
    Volltext
    Journal Article
  14. 14

    Comparing factor mixture modeling and conditional Gaussian mixture variational autoencoders for cognitive profile clustering von Orsoni, Matteo, Giovagnoli, Sara, Garofalo, Sara, Mazzoni, Noemi, Spinoso, Matilde, Benassi, Mariagrazia

    ISSN: 1664-1078, 1664-1078
    Veröffentlicht: Switzerland Frontiers Media S.A 2025
    Veröffentlicht in Frontiers in psychology (2025)
    “… While traditional methods like factor mixture modeling (FMM) have proven robust for identifying latent cognitive structures, recent advancements in deep learning may offer the potential to capture more intricate and complex cognitive patterns …”
    Volltext
    Journal Article
  15. 15

    Unsupervised Normative Learning for Quality Assessment on Diffusion MRI von Yu, Jiahao, Wang, Tenglong, He, Yifei, Pan, Yiang, He, Jianzhong, Wu, Ye

    ISSN: 1945-8452
    Veröffentlicht: IEEE 14.04.2025
    “… Recently, a variety of deep learning methods have been proposed to enhance the quality and utility of these acquisitions …”
    Volltext
    Tagungsbericht
  16. 16

    Normative Modeling using Multimodal Variational Autoencoders to Identify Abnormal Brain Structural Patterns in Alzheimer Disease von Kumar, Sayantan, Payne, Philip, Sotiras, Aristeidis

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 13.12.2022
    Veröffentlicht in arXiv.org (13.12.2022)
    “… However, existing deep learning based normative models on multimodal MRI data use unimodal autoencoders with a single encoder and decoder that may fail to capture the relationship between brain …”
    Volltext
    Paper
  17. 17

    Developing a fair and interpretable representation of the clock drawing test for mitigating low education and racial bias von Zhang, Jiaqing, Bandyopadhyay, Sabyasachi, Kimmet, Faith, Wittmayer, Jack, Khezeli, Kia, Libon, David J., Price, Catherine C., Rashidi, Parisa

    ISSN: 2045-2322, 2045-2322
    Veröffentlicht: London Nature Publishing Group UK 29.07.2024
    Veröffentlicht in Scientific reports (29.07.2024)
    “… In this study, we represented clock drawings by a priorly published 10-dimensional deep learning feature set trained on publicly available data from the National Health and Aging Trends Study (NHATS …”
    Volltext
    Journal Article
  18. 18

    An Enhanced Conditional Variational Autoencoder-Based Normative Model for Neuroimaging Analysis von Ho, Mai Phuong, Song, Yang, Sachdev, Perminder Singh, Jiang, Jiyang, Wen, Wei

    ISSN: 2692-8205
    Veröffentlicht: Cold Spring Harbor Laboratory 2025
    Veröffentlicht in bioRxiv (2025)
    “… Normative modelling in neuroimaging provides a powerful framework for quantifying individual deviations from expected brain measures as a function of relevant covariates …”
    Volltext
    Paper
  19. 19

    Distribution-based detection of radiographic changes in pneumonia patterns: A COVID-19 case study von C. Pereira, Sofia, Rocha, Joana, Campilho, Aurélio, Mendonça, Ana Maria

    ISSN: 2405-8440, 2405-8440
    Veröffentlicht: England Elsevier Ltd 30.08.2024
    Veröffentlicht in Heliyon (30.08.2024)
    “… This study proposes a novel perspective that conceptualizes COVID-19 pneumonia as a deviation from a normative distribution of typical pneumonia patterns …”
    Volltext
    Journal Article
  20. 20

    Normative Modeling via Conditional Variational Autoencoder and Adversarial Learning to Identify Brain Dysfunction in Alzheimer's Disease von Wang, Xuetong, Zhao, Kanhao, Zhou, Rong, Leow, Alex, Osorio, Ricardo, Zhang, Yu, He, Lifang

    ISSN: 2331-8422
    Veröffentlicht: Ithaca Cornell University Library, arXiv.org 13.11.2022
    Veröffentlicht in arXiv.org (13.11.2022)
    “… In this study, we propose a novel normative modeling method by combining conditional variational autoencoder with adversarial learning (ACVAE …”
    Volltext
    Paper