Suchergebnisse - noisy clustering algorithm

  1. 1

    Interval type-2 possibilistic fuzzy clustering noisy image segmentation algorithm with adaptive spatial constraints and local feature weighting & clustering weighting von Wei, Tongyi, Wang, Xiaopeng, Wu, Jiaxin, Zhu, Shengyang

    ISSN: 0888-613X, 1873-4731
    Veröffentlicht: Elsevier Inc 01.06.2023
    Veröffentlicht in International journal of approximate reasoning (01.06.2023)
    “… The interval type-2 possibilistic fuzzy C-means (IT2PFCM) algorithm is a popular data clustering and image segmentation method …”
    Volltext
    Journal Article
  2. 2

    Fuzzy subspace clustering noisy image segmentation algorithm with adaptive local variance & non-local information and mean membership linking von Wei, Tongyi, Wang, Xiaopeng, Li, Xinna, Zhu, Shengyang

    ISSN: 0952-1976, 1873-6769
    Veröffentlicht: Elsevier Ltd 01.04.2022
    Veröffentlicht in Engineering applications of artificial intelligence (01.04.2022)
    “… This paper presents a fuzzy subspace clustering noisy image segmentation algorithm with adaptive local variance …”
    Volltext
    Journal Article
  3. 3

    Cyber-Attack Detection Using Principal Component Analysis and Noisy Clustering Algorithms: A Collaborative Machine Learning-Based Framework von Parizad, Ali, Hatziadoniu, Constantine J.

    ISSN: 1949-3053, 1949-3061
    Veröffentlicht: Piscataway IEEE 01.11.2022
    Veröffentlicht in IEEE transactions on smart grid (01.11.2022)
    “… Based on the proposed architecture, three different machine learning-based methods, i.e., visualization, classification, and clustering, are employed and compared to find the best one in the FDIA detection process …”
    Volltext
    Journal Article
  4. 4

    A Flexible EM-Like Clustering Algorithm for Noisy Data von Roizman, Violeta, Jonckheere, Matthieu, Pascal, Frederic

    ISSN: 0162-8828, 1939-3539, 2160-9292, 1939-3539
    Veröffentlicht: United States IEEE 01.05.2024
    “… In this paper, we propose a Flexible EM-like Clustering Algorithm (FEMCA): a new clustering algorithm following an EM procedure is designed …”
    Volltext
    Journal Article
  5. 5

    Coarse–fine surrogate model driven multiobjective evolutionary fuzzy clustering algorithm with dual memberships for noisy image segmentation von Zhao, Feng, Liu, Feifan, Li, Chaoqi, Liu, Hanqiang, Lan, Rong, Fan, Jiulun

    ISSN: 1568-4946, 1872-9681
    Veröffentlicht: Elsevier B.V 01.11.2021
    Veröffentlicht in Applied soft computing (01.11.2021)
    “… To improve the segmentation performance and boost evolutionary efficiency of multiobjective evolutionary clustering algorithms on noisy images, this paper proposes a coarse …”
    Volltext
    Journal Article
  6. 6

    A robust kernelized intuitionistic fuzzy c-means clustering algorithm in segmentation of noisy medical images von Kaur, Prabhjot, Soni, A.K., Gosain, Anjana

    ISSN: 0167-8655, 1872-7344
    Veröffentlicht: Elsevier B.V 15.01.2013
    Veröffentlicht in Pattern recognition letters (15.01.2013)
    “… Proposed clustering method is applied on synthetic data-sets referred from various papers, real data-sets from Public Library UCI, Simulated and Real MR brain images …”
    Volltext
    Journal Article
  7. 7

    A Robust Contextual Fuzzy C-Means Clustering Algorithm for Noisy Image Segmentation von Kalti, Karim, Touil, Asma

    ISSN: 0176-4268, 1432-1343
    Veröffentlicht: New York Springer US 01.11.2023
    Veröffentlicht in Journal of classification (01.11.2023)
    “… In this paper, we address the problem of the fuzzy c-means (FCM) algorithm sensitivity to noise when clustering image pixels …”
    Volltext
    Journal Article
  8. 8
  9. 9

    Natural Frequency Identification in Noisy Environments: A Topology‐Enhanced Approach Using Deep Learning and Clustering Algorithms von Tokgöz, Gürhan, Sıcacık, Eda Avanoğlu

    ISSN: 1545-2255, 1545-2263
    Veröffentlicht: Pavia John Wiley & Sons, Inc 01.01.2025
    Veröffentlicht in Structural control and health monitoring (01.01.2025)
    “… Operational Modal Analysis (OMA) methods are commonly used to estimate the modal characteristics of structures, but their accuracy decreases in power plants …”
    Volltext
    Journal Article
  10. 10

    Investigating and Mitigating the Side Effects of Noisy Views for Self-Supervised Clustering Algorithms in Practical Multi-View Scenarios von Xu, Jie, Ren, Yazhou, Wang, Xiaolong, Feng, Lei, Zhang, Zheng, Niu, Gang, Zhu, Xiaofeng

    ISSN: 1063-6919
    Veröffentlicht: IEEE 16.06.2024
    “… ) to address this issue. Specifically, we propose a novel MVC objective that enables un-shared parameters and inconsistent clustering predictions across multiple views to reduce the side effects of noisy views …”
    Volltext
    Tagungsbericht
  11. 11

    A gradient ascent algorithm based on possibilistic fuzzy C-Means for clustering noisy data von Saberi, Hossein, Sharbati, Reza, Farzanegan, Behzad

    ISSN: 0957-4174, 1873-6793
    Veröffentlicht: New York Elsevier Ltd 01.04.2022
    Veröffentlicht in Expert systems with applications (01.04.2022)
    “… In this paper, we propose a new algorithm called Improved Possibilistic Fuzzy C-Means (IPFCM) to cluster noisy data …”
    Volltext
    Journal Article
  12. 12

    An improved event-by-event clustering algorithm for noisy acquisition von Lesage, Xavier, Tran, Rosalie, Mancini, Stephane, Fesquet, Laurent

    Veröffentlicht: IEEE 22.06.2022
    “… ). This paper presents an improved and dedicated event-by-event clustering algorithm allowing the object detection in a noisy environment which is still performant with a SNR of 1/4 …”
    Volltext
    Tagungsbericht
  13. 13

    Robust fuzzy c-means clustering algorithm using non-parametric Bayesian estimation in wavelet transform domain for noisy MR brain image segmentation von Chetih, Nabil, Messali, Zoubeida, Serir, Amina, Ramou, Naim

    ISSN: 1751-9659, 1751-9667
    Veröffentlicht: The Institution of Engineering and Technology 01.05.2018
    Veröffentlicht in IET image processing (01.05.2018)
    “… The authors propose a new extended FCM algorithm based a non-parametric Bayesian estimation in the wavelet transform domain for segmenting noisy MR brain images …”
    Volltext
    Journal Article
  14. 14

    Enhanced independent component analysis and fuzzy C-mean clustering based on novel bat algorithm for noisy image segmentation von Chetih, Nabil, Thelaidjia, Tawfik, Boudani, Fatma Zohra

    ISSN: 2631-8695, 2631-8695
    Veröffentlicht: IOP Publishing 01.12.2023
    Veröffentlicht in Engineering Research Express (01.12.2023)
    “… ), fuzzy c-means clustering (FCMC) and novel bat algorithm (NBA) for noise image segmentation …”
    Volltext
    Journal Article
  15. 15

    An efficient decentralized clustering algorithm for aggregation of noisy multi-mean data von Buadhacháin, Séamus Ó, Provan, Gregory

    ISSN: 1381-1231, 1572-9397
    Veröffentlicht: Boston Springer US 01.04.2015
    Veröffentlicht in Journal of heuristics (01.04.2015)
    “… We describe VarClust , a gossip-based decentralized clustering algorithm designed to support multi-mean decentralized aggregation in energy-constrained wireless sensor networks …”
    Volltext
    Journal Article
  16. 16

    A fuzzy clustering algorithm with spatial robust estimation constraint for noisy color image segmentation von Mújica-Vargas, Dante, Gallegos-Funes, Francisco J., Rosales-Silva, Alberto J.

    ISSN: 0167-8655, 1872-7344
    Veröffentlicht: Elsevier B.V 01.03.2013
    Veröffentlicht in Pattern recognition letters (01.03.2013)
    “… ) clustering algorithms with spatial constraints for noisy color image segmentation. The Rank M-type L (RM-L) and L-estimators are used to obtain the sufficiently spatial information of the pixels …”
    Volltext
    Journal Article
  17. 17
  18. 18

    An effective modified possibilistic Fuzzy C-Means clustering algorithm for noisy data problems von Azzouzi, Souad, El-Mekkaoui, Jaouad, Hjouji, Amal, Khalfi, Ahmed El

    Veröffentlicht: IEEE 20.10.2021
    “… Different Fuzzy C-Means clustering algorithms have been proposed, for example FCM, PCM, PFCM, most of those algorithms encounter several problems like choice of the adequate distance, efficiency …”
    Volltext
    Tagungsbericht
  19. 19

    A clustering-based coevolutionary multi-objective evolutionary algorithm for handling robust and noisy optimization von de Sousa, Mateus Clemente, Meneghini, Ivan Reinaldo, Guimarães, Frederico Gadelha

    ISSN: 1864-5909, 1864-5917
    Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.10.2024
    Veröffentlicht in Evolutionary intelligence (01.10.2024)
    “… We introduce a novel approach based on TEDA-CMOEA/D, augmented with clustering techniques for descendant generation in Robust and Noisy Optimization problems …”
    Volltext
    Journal Article
  20. 20