Suchergebnisse - multi-supervised algorithm

  1. 1

    Multi-branch global Transformer‐assisted network for fault diagnosis von Shao, Xiaorui, Kim, Chang-Soo

    ISSN: 1568-4946
    Veröffentlicht: Elsevier B.V 01.10.2025
    Veröffentlicht in Applied soft computing (01.10.2025)
    “… Fault Diagnosis (FD) is critical in smart manufacturing, enabling predictive maintenance, reducing operational costs, and enhancing system reliability. To deal …”
    Volltext
    Journal Article
  2. 2

    A multi-instance multi-label improved algorithm based on semi-supervised learning von Li Cunhe, Zhang Zhenkai, Zhu Hongbo

    ISSN: 0258-7998
    Veröffentlicht: National Computer System Engineering Research Institute of China 01.07.2019
    Veröffentlicht in Diànzǐ jìshù yīngyòng (01.07.2019)
    “… + algorithm is a classical classification algorithm that uses degenerate ideas in the multi-instance multi-label learning framework. It can …”
    Volltext
    Journal Article
  3. 3

    DREAM2 Challenge: Integrated Multi‐Array Supervised Learning Algorithm for BCL6 Transcriptional Targets Prediction von Lee, W.H., Narang, V., Xu, H., Lin, F., Chin, K.C., Sung, W.K.

    ISSN: 0077-8923, 1749-6632
    Veröffentlicht: 01.01.2009
    Veröffentlicht in Annals of the New York Academy of Sciences (01.01.2009)
    “… In the Dialogue for Reverse Engineering Assessments and Methods Conference (DREAM2) BCL6 target identification challenge, we were given a list of 200 genes and …”
    Volltext
    Journal Article
  4. 4

    Cross-Domain Recommendation Algorithm Combining Multi-personalized Bridges and Self-supervised Learning von WANG Yonggui, LIU Danni

    ISSN: 1673-9418
    Veröffentlicht: Journal of Computer Engineering and Applications Beijing Co., Ltd., Science Press 01.07.2024
    Veröffentlicht in Jisuanji kexue yu tansuo (01.07.2024)
    “… A cross-domain recommendation algorithm combining multi-personalized bridges and self-supervised learning (MS-PTUPCDR …”
    Volltext
    Journal Article
  5. 5

    Corrections to "Self-Supervised Adaptive Learning Algorithm for Multi-Horizon Electricity Price Forecasting" von Zamee, Muhammad Ahsan, Lee, Yeongsang, Won, Dongjun

    ISSN: 2169-3536, 2169-3536
    Veröffentlicht: Piscataway IEEE 2025
    Veröffentlicht in IEEE access (2025)
    “… Presents corrections to the paper, Corrections to "Self-Supervised Adaptive Learning Algorithm for Multi-Horizon Electricity Price Forecasting" …”
    Volltext
    Journal Article
  6. 6

    Multi-Supervised Feature Fusion Attention Network for Clouds and Shadows Detection von Ji, Huiwen, Xia, Min, Zhang, Dongsheng, Lin, Haifeng

    ISSN: 2220-9964, 2220-9964
    Veröffentlicht: Basel MDPI AG 01.06.2023
    Veröffentlicht in ISPRS international journal of geo-information (01.06.2023)
    “… Based on the visual and distribution characteristics of clouds and their shadows in remote sensing imagery, this paper provides a multi-supervised feature fusion attention network …”
    Volltext
    Journal Article
  7. 7

    MSC-CSMC: A multi-objective semi-supervised clustering algorithm based on constraints selection and multi-source constraints for gene expression data von Wang, Zeyuan, Gu, Hong, Zhao, Minghui, Li, Dan, Wang, Jia

    ISSN: 1664-8021, 1664-8021
    Veröffentlicht: Switzerland Frontiers Media S.A 27.02.2023
    Veröffentlicht in Frontiers in genetics (27.02.2023)
    “… To this end, the research proposes a new multi-objective semi-supervised clustering algorithm based on constraints selection and multi-source constraints (MSC-CSMC …”
    Volltext
    Journal Article
  8. 8

    Weakly supervised semantic segmentation and optimization algorithm based on multi-scale feature model von Changzhen XIONG, Hui ZHI

    ISSN: 1000-436X
    Veröffentlicht: Editorial Department of Journal on Communications 01.01.2019
    Veröffentlicht in Tongxin Xuebao (01.01.2019)
    “… In order to improve the accuracy of weakly-supervised semantic segmentation method,a segmentation and optimization algorithm that combines multi-scale feature …”
    Volltext
    Journal Article
  9. 9

    Weakly supervised semantic segmentation and optimization algorithm based on multi-scale feature model von Changzhen XIONG, Hui ZHI

    ISSN: 1000-436X
    Veröffentlicht: Editorial Department of Journal on Communications 01.01.2019
    Veröffentlicht in Tongxin Xuebao (01.01.2019)
    “… In order to improve the accuracy of weakly-supervised semantic segmentation method,a segmentation and optimization algorithm that combines multi-scale feature …”
    Volltext
    Journal Article
  10. 10

    A supervised multi-spike learning algorithm based on gradient descent for spiking neural networks von Xu, Yan, Zeng, Xiaoqin, Han, Lixin, Yang, Jing

    ISSN: 0893-6080, 1879-2782, 1879-2782
    Veröffentlicht: Kidlington Elsevier Ltd 01.07.2013
    Veröffentlicht in Neural networks (01.07.2013)
    “… We use a supervised multi-spike learning algorithm for spiking neural networks (SNNs) with temporal encoding to simulate the learning mechanism of biological neurons in which the SNN output spike trains are encoded by firing times …”
    Volltext
    Journal Article
  11. 11

    The stochastic multi-gradient algorithm for multi-objective optimization and its application to supervised machine learning von Liu, S., Vicente, L. N.

    ISSN: 0254-5330, 1572-9338
    Veröffentlicht: New York Springer US 01.08.2024
    Veröffentlicht in Annals of operations research (01.08.2024)
    “… Optimization of conflicting functions is of paramount importance in decision making, and real world applications frequently involve data that is uncertain or …”
    Volltext
    Journal Article
  12. 12

    ISSMLCF: an inductive semi-supervised multi-label learning algorithm with co-forest paradigm von Liu, Wenhao, Duan, Jicong, Shao, Changbin, Yang, Xibei, Xu, Sen, Yu, Hualong

    ISSN: 0924-669X, 1573-7497
    Veröffentlicht: New York Springer US 01.07.2025
    Veröffentlicht in Applied intelligence (Dordrecht, Netherlands) (01.07.2025)
    “… leverage between the quality of predictive models and labeling costs. In this study, a novel semi-supervised multi-label learning algorithm called the inductive semi-supervised multi-label learning algorithm based on co-forest paradigm (ISSMLCF) was proposed …”
    Volltext
    Journal Article
  13. 13

    A semi-supervised learning algorithm for multi-label classification and multi-assignment clustering problems based on a Multivariate Data Analysis von Gull, Carlos Quintero, Aguilar, Jose

    ISSN: 0952-1976
    Veröffentlicht: Elsevier Ltd 01.11.2024
    Veröffentlicht in Engineering applications of artificial intelligence (01.11.2024)
    “… On the other hand, we are starting to see machine learning algorithms that solve the problem of multi-label classification and multiple cluster assignment, but there are no algorithms that solve …”
    Volltext
    Journal Article
  14. 14

    A resource limited artificial immune system algorithm for supervised classification of multi/hyper-spectral remote sensing imagery von Zhang, L., Zhong, Y., Huang, B., Li, P.

    ISSN: 0143-1161, 1366-5901
    Veröffentlicht: Abingdon Taylor & Francis 01.04.2007
    Veröffentlicht in International journal of remote sensing (01.04.2007)
    “… This paper explores a novel artificial immune algorithm based on the resource limited principles for supervised multi/hyper-spectral image classification …”
    Volltext
    Journal Article
  15. 15

    Rademacher Complexity Bounds for a Penalized Multi-class Semi-supervised Algorithm von Maximov, Yury, Amini, Massih-Reza, Harchaoui, Zaid

    ISSN: 1076-9757, 1076-9757, 1943-5037
    Veröffentlicht: San Francisco AI Access Foundation 01.01.2018
    Veröffentlicht in The Journal of artificial intelligence research (01.01.2018)
    “… We propose Rademacher complexity bounds for multi-class classifiers trained with a two-step semi-supervised model …”
    Volltext
    Journal Article
  16. 16

    Active Semi-Supervised Clustering Algorithm for Multi-Density Datasets von Atwa, Walid, Almazroi, Abdulwahab Ali, Aldhahr, Eman A., Janbi, Nourah Fahad

    ISSN: 2158-107X, 2156-5570
    Veröffentlicht: West Yorkshire Science and Information (SAI) Organization Limited 2024
    “… This research proposes an active semi-supervised density-based clustering algorithm, termed "ASS-DBSCAN," designed specifically for clustering multi-density data …”
    Volltext
    Journal Article
  17. 17

    MGFKD: A semi-supervised multi-source domain adaptation algorithm for cross-subject EEG emotion recognition von Zhang, Rui, Guo, Huifeng, Xu, Zongxin, Hu, Yuxia, Chen, Mingming, Zhang, Lipeng

    ISSN: 0361-9230, 1873-2747, 1873-2747
    Veröffentlicht: United States Elsevier Inc 01.03.2024
    Veröffentlicht in Brain research bulletin (01.03.2024)
    “… To solve this problem, this paper proposes a semi-supervised domain adaptive algorithm based on few labeled samples of target subject, which called multi-domain geodesic flow kernel dynamic distribution alignment (MGFKD …”
    Volltext
    Journal Article
  18. 18

    Multi-Modal Self-Supervised Learning Algorithm-Based Product Recommendation von Gao, Li, Fan, Haiping, Chen, Qingkui, Yang, Heyu

    ISSN: 1545-5955, 1558-3783
    Veröffentlicht: IEEE 2025
    “… For this reason, this paper proposes Multi-Modal Self-Supervised Learning Algorithm Based Product Recommendation (MMSLRec). 1 …”
    Volltext
    Journal Article
  19. 19

    Survey of Multi-label Classification Based on Supervised and Semi-supervised Learning von Wu, Hong-xin, Han, Meng, Chen, Zhi-qiang, Zhang, Xi-long, Li, Mu-hang

    ISSN: 1002-137X
    Veröffentlicht: Chongqing Guojia Kexue Jishu Bu 01.08.2022
    Veröffentlicht in Ji suan ji ke xue (01.08.2022)
    “… Most of the traditional multi-label classification algorithms use supervised learning, but in real life, there are many unlabeled …”
    Volltext
    Journal Article
  20. 20

    Research on semi-supervised multi-graph classification algorithm based on MR-MGSSL for sensor network von Gang, Yang, Na, Zhang, Tao, Jin, Dawei, Wang, Yinzhu, Kang, Feng, Gao

    ISSN: 1687-1499, 1687-1472, 1687-1499
    Veröffentlicht: Cham Springer International Publishing 22.06.2020
    “… Therefore, this paper proposes an MR-MGSSL algorithm and applies it to the classification of semi-supervised multi-graph …”
    Volltext
    Journal Article