Suchergebnisse - extended hierarchical multiinnovation stochastic gradient algorithm
-
1
Decomposition‐based multiinnovation gradient identification algorithms for a special bilinear system based on its input‐output representation
ISSN: 1049-8923, 1099-1239Veröffentlicht: Bognor Regis Wiley Subscription Services, Inc 01.06.2020Veröffentlicht in International journal of robust and nonlinear control (01.06.2020)“… ‐based multiinnovation (ie, hierarchical multiinnovation) generalized extended stochastic gradient identification (H‐MI‐GESG …”
Volltext
Journal Article -
2
Hierarchical multi-innovation generalised extended stochastic gradient methods for multivariable equation-error autoregressive moving average systems
ISSN: 1751-8644, 1751-8652Veröffentlicht: The Institution of Engineering and Technology 02.07.2020Veröffentlicht in IET control theory & applications (02.07.2020)“… ) algorithm, namely, hierarchical multi-innovation generalised extended stochastic gradient algorithm, is derived for the multivariable EEARMA systems through expanding the innovation vector to the innovation …”
Volltext
Journal Article -
3
Maximum likelihood‐based gradient estimation for multivariable nonlinear systems using the multiinnovation identification theory
ISSN: 1049-8923, 1099-1239Veröffentlicht: Bognor Regis Wiley Subscription Services, Inc 25.09.2020Veröffentlicht in International journal of robust and nonlinear control (25.09.2020)“… ‐based maximum likelihood recursive extended stochastic gradient algorithm with reduced computational complexity is presented to estimate all the parameters directly …”
Volltext
Journal Article -
4
The iterative identification method for Hammerstein nonlinear channel
ISBN: 1849198454, 9781849198455Veröffentlicht: Stevenage, UK IET 2014Veröffentlicht in 10th International Conference on Wireless Communications, Networking and Mobile Computing (WiCOM 2014) (2014)“… The extended hierarchical multi-innovation stochastic gradient algorithm is proposed by introducing multi-innovation identification theory and hierarchical principle to the extended stochastic gradient algorithm …”
Volltext
Tagungsbericht

